FuRL
FuRL copied to clipboard
FuRL
Environment Setup
Install the conda env via:
conda create --name furl python==3.11
conda activate furl
pip install -r requirements.txt
Training
Generating Expert Dataset
An optional setting in FuRL is to use a goal image to accelerate the exploration before we collected the first successful trajectory.
python main.py --config.env_name=door-open-v2-goal-hidden --config.exp_name=oracle
The oracle trajectory data will be saved in data/oracle.
Example on Fixed-goal Task
python main.py --config.env_name=door-open-v2-goal-hidden --config.exp_name=furl
Example on Random-goal Task
python main.py --config.env_name=door-open-v2-goal-observable --config.exp_name=furl
Paper
FuRL: Visual-Language Models as Fuzzy Rewards for Reinforcement Learning
Yuwei Fu, Haichao Zhang, Di Wu, Wei Xu, Benoit Boulet
International Conference on Machine Learning (ICML), 2024
Cite
Please cite our work if you find it useful:
@InProceedings{fu2024,
title = {FuRL: Visual-Language Models as Fuzzy Rewards for Reinforcement Learning},
author = {Yuwei Fu and Haichao Zhang and Di Wu and Wei Xu and Benoit Boulet},
booktitle = {Proceedings of the 41st International Conference on Machine Learning},
year = {2024}
}