DGMN2 icon indicating copy to clipboard operation
DGMN2 copied to clipboard

[TPAMI 2022 & CVPR 2020 Oral] Dynamic Graph Message Passing Networks

DGMN2

This repository contains the implementation of Dynamic Graph Message Passing Networks for Visual Recognition.

Main results

Image Classification

ImageNet-1K

Method Params (M) FLOPs (G) Top1 Acc (%) Download
DGMN2-Tiny 12.1 2.3 78.7 model
DGMN2-Small 21.0 4.3 81.7 model
DGMN2-Medium 35.8 7.1 82.5 model
DGMN2-Large 48.3 10.4 83.3 model

Object Detection

COCO validation set

Method Backbone Lr schd box AP mask AP Download
RetinaNet DGMN2-Tiny 1x 39.7 - model
RetinaNet DGMN2-Small 1x 42.5 - model
RetinaNet DGMN2-Medium 1x 43.7 - model
RetinaNet DGMN2-Large 1x 44.7 - model
Mask R-CNN DGMN2-Tiny 1x 40.2 37.2 model
Mask R-CNN DGMN2-Small 1x 43.4 39.7 model
Mask R-CNN DGMN2-Medium 1x 44.4 40.2 model
Mask R-CNN DGMN2-Large 1x 46.2 41.6 model
Deformable DETR DGMN2-Tiny 50e 44.4 - model
Deformable DETR DGMN2-Small 50e 47.3 - model
Deformable DETR DGMN2-Medium 50e 48.4 - model
Deformable DETR+ DGMN2-Small 50e 48.5 - model
Sparse R-CNN DGMN2-Small 3x 48.2 - model

Semantic Segmentation

Cityscapes validation set

Method Backbone Iters mIoU mIoU (ms + flip) Download
Semantic FPN DGMN2-Tiny 40K 78.09 79.40 model
Semantic FPN DGMN2-Small 40K 80.65 81.58 model
Semantic FPN DGMN2-Medium 40K 80.60 81.79 model
Semantic FPN DGMN2-Large 40K 81.75 82.64 model
SETR-Naive DGMN2-Tiny 40K 77.23 78.23 model
SETR-Naive DGMN2-Small 40K 80.31 81.04 model
SETR-Naive DGMN2-Medium 40K 80.83 81.39 model
SETR-Naive DGMN2-Large 40K 81.80 82.61 model
SETR-PUP DGMN2-Tiny 40K 78.25 79.26 model
SETR-PUP DGMN2-Small 40K 79.78 80.73 model
SETR-PUP DGMN2-Medium 40K 80.97 81.80 model
SETR-PUP DGMN2-Large 40K 81.58 82.27 model
SETR-MLA DGMN2-Tiny 40K 78.25 79.32 model
SETR-MLA DGMN2-Small 40K 80.79 81.62 model
SETR-MLA DGMN2-Medium 40K 81.09 82.00 model
SETR-MLA DGMN2-Large 40K 81.55 81.98 model

Getting Started

  • For image classification, please see classification.
  • For object detection, please see detection.
  • For semantic segmentation, please see segmentation.
  • For Deformable DETR, please see deformable_detr.
  • For Sparse R-CNN, please see sparsercnn.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Reference

@inproceedings{zhang2020dynamic,
  title={Dynamic Graph Message Passing Networks},
  author={Zhang, Li and Xu, Dan and Arnab, Anurag and Torr, Philip H.S.},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020}
}
@article{zhang2022dynamic,
  title={Dynamic Graph Message Passing Networks for Visual Recognition},
  author={Zhang, Li and Chen, Mohan and Arnab, Anurag and Xue, Xiangyang and Torr, Philip H.S.},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2022}
}

Acknowledgement

Thanks to previous open-sourced repo:
PVT
PyTorch Image Models
MMDetection
MMSegmentation
Deformable DETR
Sparse R-CNN
Detectron2