sequence-labeling-by-nn
sequence-labeling-by-nn copied to clipboard
命名实体识别实验
- [ ] 模型一
- [ ] 模型二
- [ ] 模型三
- [ ] 模型四
- [ ] 模型五
模型一
基础的完全基于分类的模型
待补充
模型二
实验设置
- word embedding dim : 50 , postag embedding dim : 5 , ner embedding dim : 5
- max epoch 5 , devel freq : 6000 instances
- disable dropout
实验结果
dataset | pre-tag F1 |
---|---|
pku-train | 98.02% |
pku-holdout | 92.94% |
pku-test | 93.08% |
模型三
实验设置
- gigawords : word2vec training with negative-samples mode and skip-gram mothod , dimension 50
- sogou-news : same as gigawords
- the others is same as 实验二 setting
实验结果
datastet | dc-giga-skipgram F1 | dc-sogou-skipgram F1 |
---|---|---|
pku-train | 97.62% | 99.64% |
pku-holdout | 94.44% | 94.26% |
pku-test | 94.07% | 94.33% |
模型四
实验设置
- dropout rate 0.1
- the others is same as 实验二 setting
实验结果
dataset | crf-dr0.1 F1 |
---|---|
pku-train | 97.80% |
pku-holdout | 93.34% |
pku-test | 94.07% |
- dr0.x 表示dropout rate 0.x
模型五
实验设置
- dropout rate 0.1
- the others is the same as 实验三 setting
实验结果
dataset | giga-dr0.1 | sogou-dr0.1 |
---|---|---|
pku-train | 98.69% | 98.06% |
pku-holdout | 94.37% | 94.21% |
pku-test | 94.47% | 94.71% |