sequence-labeling-by-nn icon indicating copy to clipboard operation
sequence-labeling-by-nn copied to clipboard

命名实体识别实验

Open fseasy opened this issue 8 years ago • 5 comments

  • [ ] 模型一
  • [ ] 模型二
  • [ ] 模型三
  • [ ] 模型四
  • [ ] 模型五

fseasy avatar May 13 '16 02:05 fseasy

模型一

基础的完全基于分类的模型

待补充

fseasy avatar May 13 '16 02:05 fseasy

模型二

image

实验设置

  1. word embedding dim : 50 , postag embedding dim : 5 , ner embedding dim : 5
  2. max epoch 5 , devel freq : 6000 instances
  3. disable dropout

实验结果

dataset pre-tag F1
pku-train 98.02%
pku-holdout 92.94%
pku-test 93.08%

fseasy avatar May 13 '16 02:05 fseasy

模型三

image

实验设置

  1. gigawords : word2vec training with negative-samples mode and skip-gram mothod , dimension 50
  2. sogou-news : same as gigawords
  3. the others is same as 实验二 setting

实验结果

datastet dc-giga-skipgram F1 dc-sogou-skipgram F1
pku-train 97.62% 99.64%
pku-holdout 94.44% 94.26%
pku-test 94.07% 94.33%

fseasy avatar May 13 '16 02:05 fseasy

模型四

image

实验设置

  1. dropout rate 0.1
  2. the others is same as 实验二 setting

实验结果

dataset crf-dr0.1 F1
pku-train 97.80%
pku-holdout 93.34%
pku-test 94.07%
  • dr0.x 表示dropout rate 0.x

fseasy avatar May 13 '16 02:05 fseasy

模型五

image

实验设置

  1. dropout rate 0.1
  2. the others is the same as 实验三 setting

实验结果

dataset giga-dr0.1 sogou-dr0.1
pku-train 98.69% 98.06%
pku-holdout 94.37% 94.21%
pku-test 94.47% 94.71%

fseasy avatar May 13 '16 02:05 fseasy