auto-attack icon indicating copy to clipboard operation
auto-attack copied to clipboard

Width-Adjusted-Regularization Update

Open tabrisweapon opened this issue 5 years ago • 2 comments

Paper: { http://arxiv.org/abs/2010.01279 }

Venue: {unpublished}

Dataset and threat model: {CIFAR-10, l-inf, eps=8/255, AutoAttack}

Code: {Same with the last report}

Pre-trained model: {https://www.dropbox.com/s/89i5zoxa2ugglaq/wrn-34-15-cad59.pt?dl=0 }

Log file: {None}

Additional data: {yes}

Clean and robust accuracy: {clean:87.67%, AutoAttack: 60.65%}

Architecture: {WideResNet-34-15}

Description of the model/defense: ’‘’ Dear authors of AutoAttack: This is an update for our last submission in https://github.com/fra31/auto-attack/issues/21. Here we report our new best results and hope to replace it with the current one on the table (the 4th one). We also change our title from "Does Network Width Really Help Adversarial Robustness?" to "Do Wider Neural Networks Really Help Adversarial Robustness?". Please update this information for us on the RobustBench too.

Thanks! Boxi Wu ‘’‘

tabrisweapon avatar Jan 06 '21 13:01 tabrisweapon

Hi,

thanks for sharing your new model! I've updated the entry. I'll also change the title on RobustBench.

fra31 avatar Jan 07 '21 12:01 fra31

Hi,

thanks for sharing your new model! I've updated the entry. I'll also change the title on RobustBench.

Thanks!

tabrisweapon avatar Jan 08 '21 07:01 tabrisweapon