Yang Nie
Yang Nie
## reproduction all results trained on 1 gpu (V100) with total batch size 16 r18vd with amp ```python Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] =...
> @flytocc Thank you very much. I would like to confirm why a previous pull request (PR) could not align the precision. Was something incorrect there? There are many differences...
- The training (w. amp) AP of `r50vd` arch fluctuates between `52.9` and `53.1`. - Random interpolations has almost no effect on AP.
> > * The training AP of `r50vd` arch fluctuates between `52.9` and `53.1`. > > * Random interpolations has almost no effect on AP. > > 您好,我试用了下您写的rt-detr,发现在我的数据集中存在不收敛的现象,就是训练到20个epoch左右,map突然变成0,但我在rt-detr官方代码中并没有这个问题,都是用的4卡4batch 目前只测试过COCO数据集。你试着可以检查一下数据增强
@ychensu 要不你到 [flytocc/mmdetection](https://github.com/flytocc/mmdetection) 提一个issue
try https://github.com/pytorch/pytorch/issues/121222
fix: ``` active_ids = [ id for id in self.ids if id not in ids and self.tracks[id].frame_ids[-1] == frame_id - 1 ] if self.with_reid else self.ids ```
> 你好,我使用`rtdetv2_r18vd_120e_coco.yaml`训练,最终结果为47.6,与论文中的48.1存在一定差距,请问有可能是什么原因。 我把rtdetrv2移植到mmdet上试了一下[repo](https://github.com/flytocc/mmdetection/tree/rtdetr-v2),精度47.5 (torch 2.2.1)