DiGCN icon indicating copy to clipboard operation
DiGCN copied to clipboard

Can be applied to large-scale graph?

Open un0o7 opened this issue 2 years ago • 1 comments

I think that this work cannot be applied to large-scale graphs for the reason that calculating the adj through your method needs eigen decomposition and to_dense() method needs large memory available. eig_value, left_vector = scipy.linalg.eig(p_ppr.numpy(),left=True,right=False) p_dense = torch.sparse.FloatTensor(edge_index, p, torch.Size([num_nodes,num_nodes])).to_dense()

un0o7 avatar Oct 20 '22 11:10 un0o7

Yes, it can be used

hosseinghorbanzadeh avatar Mar 25 '24 09:03 hosseinghorbanzadeh