feathr
feathr copied to clipboard
[FR] Consider detecting current running context is databricks notebook or not; if it is, install Feathr library
Willingness to contribute
No. I cannot contribute a bug fix at this time.
Feature Request Proposal
Some sample code:
! pip install databricks_cli
ctx = dbutils.notebook.entry_point.getDbutils().notebook().getContext()
token_value=ctx.apiToken().get()
workspace_instance_url=f"https://{ctx.tags().get('browserHostName').get()}"
cluster_id = ctx.tags().get('clusterId').get()
from databricks_cli.dbfs.api import DbfsApi
from databricks_cli.runs.api import RunsApi
from databricks_cli.dbfs.dbfs_path import DbfsPath
from databricks_cli.sdk.api_client import ApiClient
from databricks_cli.libraries.api import LibrariesApi
api_client = ApiClient(host=workspace_instance_url, token=token_value)
LibrariesApi(api_client=api_client).install_libraries(cluster_id, libraries = [{
"maven": {
"coordinates": "com.linkedin.feathr:feathr_2.12:0.9.0"
}
}])
res = LibrariesApi(api_client=api_client).cluster_status(cluster_id)
if 'feathr' in res['library_statuses'][0]['library']['maven']['coordinates']:
print("feathr is registered successfully")
Motivation
What is the use case for this feature?
In this case, we don't have to start a new cluster everytime; we can reuse the existing cluster if necessary
Details
No response
What component(s) does this feature request affect?
- [ ]
Python Client
: This is the client users use to interact with most of our API. Mostly written in Python. - [ ]
Computation Engine
: The computation engine that execute the actual feature join and generation work. Mostly in Scala and Spark. - [ ]
Feature Registry API
: The frontend API layer supports SQL, Purview(Atlas) as storage. The API layer is in Python(FAST API) - [ ]
Feature Registry Web UI
: The Web UI for feature registry. Written in React