MiB
MiB copied to clipboard
Project dependencies may have API risk issues
Hi, In MiB, inappropriate dependency versioning constraints can cause risks.
Below are the dependencies and version constraints that the project is using
absl-py==0.8.0
apex==0.1
apturl==0.5.2
asn1crypto==0.24.0
astor==0.8.0
attrs==19.1.0
Automat==0.6.0
backcall==0.1.0
bleach==3.1.0
Brlapi==0.6.6
certifi==2018.1.18
chardet==3.0.4
click==6.7
colorama==0.3.7
command-not-found==0.3
configobj==5.0.6
constantly==15.1.0
cryptography==2.1.4
cupshelpers==1.0
cvxpy==1.0.25
cycler==0.10.0
decorator==4.4.0
defer==1.0.6
defusedxml==0.6.0
dill==0.3.1.1
distro-info===0.18ubuntu0.18.04.1
ecos==2.0.7.post1
entrypoints==0.3
future==0.17.1
gast==0.3.1
google-pasta==0.1.7
grpcio==1.23.0
h5py==2.10.0
httplib2==0.9.2
hyperlink==17.3.1
idna==2.6
incremental==16.10.1
inplace-abn==1.0.7
ipykernel==5.1.2
ipython==7.8.0
ipython-genutils==0.2.0
ipywidgets==7.5.1
jedi==0.15.1
Jinja2==2.10.1
joblib==0.11
jsonschema==3.0.2
jupyter==1.0.0
jupyter-client==5.3.3
jupyter-console==6.0.0
jupyter-core==4.5.0
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.0
keyring==10.6.0
keyrings.alt==3.0
kiwisolver==1.1.0
language-selector==0.1
launchpadlib==1.10.6
lazr.restfulclient==0.13.5
lazr.uri==1.0.3
louis==3.5.0
macaroonbakery==1.1.3
Mako==1.0.7
Markdown==3.1.1
MarkupSafe==1.1.1
matplotlib==3.1.1
mistune==0.8.4
multiprocess==0.70.9
nbconvert==5.6.0
nbformat==4.4.0
netifaces==0.10.4
nose==1.3.7
notebook==6.0.1
numpy==1.17.2
oauth==1.0.1
olefile==0.45.1
osqp==0.6.1
PAM==0.4.2
pandocfilters==1.4.2
parso==0.5.1
pexpect==4.7.0
pickleshare==0.7.5
Pillow==6.1.0
pluggy==0.6.0
prometheus-client==0.7.1
prompt-toolkit==2.0.9
protobuf==3.9.1
ptyprocess==0.6.0
py==1.5.2
pyasn1==0.4.2
pyasn1-modules==0.2.1
pycairo==1.16.2
pycrypto==2.6.1
pycups==1.9.73
Pygments==2.4.2
pygobject==3.26.1
pymacaroons==0.13.0
PyNaCl==1.1.2
pyOpenSSL==17.5.0
pyparsing==2.4.2
pyRFC3339==1.0
pyrsistent==0.15.4
pyserial==3.4
pytest==3.3.2
python-apt==1.6.4
python-dateutil==2.8.0
python-debian==0.1.32
pytz==2018.3
pyxdg==0.25
PyYAML==3.12
pyzmq==18.1.0
qtconsole==4.5.5
reportlab==3.4.0
requests==2.18.4
requests-unixsocket==0.1.5
scikit-learn==0.19.1
scipy==1.3.1
screen-resolution-extra==0.0.0
scs==2.1.1.post2
SecretStorage==2.3.1
Send2Trash==1.5.0
service-identity==16.0.0
simplegeneric==0.8.1
simplejson==3.13.2
six==1.12.0
ssh-import-id==5.7
system-service==0.3
systemd-python==234
tensorboard==1.14.0
tensorboardX==1.8
tensorflow-estimator==1.14.0
tensorflow-gpu==1.14.0
termcolor==1.1.0
terminado==0.8.2
testpath==0.4.2
torch==1.2.0
torchvision==0.4.0
tornado==6.0.3
traitlets==4.3.2
Twisted==17.9.0
ubuntu-drivers-common==0.0.0
ufw==0.36
urllib3==1.22
usb-creator==0.3.3
wadllib==1.3.2
wcwidth==0.1.7
webencodings==0.5.1
Werkzeug==0.15.6
widgetsnbextension==3.5.1
wrapt==1.11.2
xkit==0.0.0
zope.interface==4.3.2
The version constraint == will introduce the risk of dependency conflicts because the scope of dependencies is too strict. The version constraint No Upper Bound and * will introduce the risk of the missing API Error because the latest version of the dependencies may remove some APIs.
After further analysis, in this project, The version constraint of dependency multiprocess can be changed to ==0.70.4. The version constraint of dependency multiprocess can be changed to >=0.70.4,<=0.70.4. The version constraint of dependency Pillow can be changed to ==9.2.0. The version constraint of dependency Pillow can be changed to >=2.0.0,<=9.1.1. The version constraint of dependency pyasn1 can be changed to >=0.4.1,<=0.4.8.
The above modification suggestions can reduce the dependency conflicts as much as possible, and introduce the latest version as much as possible without calling Error in the projects.
The invocation of the current project includes all the following methods.
The calling methods from the multiprocess
logger.debug logger.info
The calling methods from the Pillow
PIL.Image.open
The calling methods from the pyasn1
open
The calling methods from the all methods
torch.log_softmax utils.logger.Logger.info self._mean.reshape self.n_classes.mask.label_pred.int.mask.label_true.astype.self.n_classes.np.bincount.reshape.sum dict dataset.transform.Resize self.mod2 any metrics.StreamSegMetrics slice range.keys self.licarl.item x.split join argparser.modify_command_options model.named_parameters torchvision.transforms.functional.adjust_contrast self.book.clear utils.loss.KnowledgeDistillationLoss os.makedirs self.lambd torch.nn.Linear p.grad.detach torch.cat metrics.update p.grad.detach.pow torch.nn.functional.binary_cross_entropy_with_logits mask.float torch.no_grad utils.logger.Logger.add_image self.mod5 torch.exp NotImplementedError VOCSegmentation torch.randint os.path.join os.path.isdir numpy.load n.self.model_old_dict.p.detach.pow model.eval tbl.items matplotlib.pyplot.subplots type torch.utils.data.DataLoader targets.sum.loss.torch.masked_select.sum RW mask.label_true.astype self.regularizer.load_state_dict inputs.shape.labels_new.F.one_hot.float train.Trainer torch.nn.functional.pad tasks.get_task_labels self.fisher_old.items n.self.score.to random.random numpy.random.choice list.append warnings.warn random.uniform Compose images.detach.cpu.numpy self.IncrementalSegmentationModule.super.__init__ key.self.fisher_old.to denorm self.convs targets.sum.loss.torch.masked_select.mean os.path.isfile class_loss.torch.tensor.to torch.nn.CrossEntropyLoss torch.log module.named_children matplotlib.use self.PolyLR.super.__init__ torch.optim.lr_scheduler.StepLR.state_dict self.GlobalAvgPool2d.super.__init__ torch.distributed.get_rank utils.Denormalize self._fast_hist p.clone numpy.concatenate utils.PolyLR model.module.init_new_classifier torch.nn.functional.pad.view self.classes.torch.FloatTensor.torch.log.to target.label2color.transpose.astype loss.mean.mean torch.nn.functional.one_hot numpy.diag.sum torchvision.transforms.functional.resized_crop torch.nn.Conv2d.append labels.cpu.numpy.cpu self._global_pooling self.lde_loss utils.filter_images torch.logsumexp.unsqueeze apex.amp.scale_loss modules.GlobalAvgPool2d n.self.model_temp.to math.sqrt optim.zero_grad torchvision.transforms.functional.adjust_saturation idxs_path.np.load.tolist logging.basicConfig self.get_score utils.loss.UnbiasedKnowledgeDistillationLoss self.head fig.tight_layout torch.nn.functional.pad.repeat p.clone.detach.cpu self.regularizer.update numpy.bincount scaled_loss.backward p.torch.clone.detach argparse.ArgumentParser t torch.nn.functional.avg_pool2d self.red_bn torch.optim.lr_scheduler.StepLR.load_state_dict torch.distributed.reduce label2color self.score.items convert_bn2gn train.Trainer.load_state_dict transform mod epoch_loss.torch.tensor.to cls.bias.data.copy_ images.to.detach torch.nn.GroupNorm.add_module self.DeeplabV3.super.__init__ self.model.named_parameters m samples.cpu.numpy torch.nn.functional.nll_loss self._transform_tag torch.optim.SGD.load_state_dict score.items f.readlines modules.DeeplabV3 logger.debug torch.nn.functional.leaky_relu utils.logger.Logger idxs.append opts.backbone.models.__dict__ self.convs.add_ apex.parallel.DistributedDataParallel.state_dict inputs.size norm_act m.eval torch.tensor lt.flatten numpy.random.seed torch.softmax x.dim vars int AdeSegmentation metrics.synch apex.parallel.DistributedDataParallel.cuda metrics.reset apex.parallel.DistributedDataParallel.parameters torchvision.transforms.functional.crop inputs.shape.targets.shape.range.x.x.torch.tensor.to __all__.append apex.amp.initialize n.self.model_old_dict.p.pow.n.self.score_actual.sum sorted utils.logger.Logger.add_results torch.zeros_like mat.max n.self.model_old_dict.p.n.self.fisher_old.sum tasks.get_task_list logger.info PIL.Image.open p.clone.detach self.ResNet.super.__init__ torch.from_numpy torch.nn.functional.interpolate torchvision.transforms.functional.rotate self.body math.log dataset.transform.RandomResizedCrop numpy.mean lbl.label2color.transpose self.logger.add_image sample.apply_ TypeError random.seed round fil inputs.shape.labels_new.F.one_hot.float.permute float logging.info modules.ResidualBlock model_old.state_dict tensorboardX.SummaryWriter utils.logger.Logger.add_table torch.nn.MSELoss train_loader.sampler.set_epoch prediction.cpu.numpy math.exp labels.cpu.numpy.to lp.flatten functools.partial torch.nn.init.calculate_gain voc_cmap self.get_score.items self.ResidualBlock.super.__init__ segmentation_module.make_model inputs.narrow.narrow x.idxs.append self.order.index self.lkd_loss torch.nn.BCEWithLogitsLoss labels.outputs.mean train.Trainer.validate torchvision.transforms.functional.pad os.path.expanduser labels.cpu.numpy os.path.exists self.get_params setattr torch.FloatTensor get_dataset IncrementalSegmentationModule torch.masked_select optim.step repr freq.iu.freq.freq.sum v.to torchvision.transforms.functional.adjust_hue zip torch.load par.to torch.arange apex.parallel.DistributedDataParallel.fix_bn cityscapes_cmap self.fisher.items torch.sum images.to.to dataset argparser.get_argparser.parse_args dataset.transform.Compose utils.loss.BCEWithLogitsLossWithIgnoreIndex torch.optim.lr_scheduler.StepLR torch.nn.init.constant_ apex.parallel.DistributedDataParallel.load_state_dict utils.logger.Logger.print utils.logger.Logger.add_figure dataset.transform.CenterCrop random.randint min self.confusion_matrix_to_fig ax.figure.colorbar torch.nn.MaxPool2d torchvision.transforms.functional.adjust_brightness SegmentationModule focal_loss.mean FocalLoss self._check_input self.red_conv util.try_index images.detach.cpu torchvision.transforms.functional.to_tensor self.classifier torchvision.transforms.functional.center_crop self.map_bn self.regularizer.penalty.item self.cls.bias.data.copy_ torch.cuda.manual_seed self.confusion_matrix.astype p.detach argparse.ArgumentParser.add_argument str utils.logger.Logger.debug self.__strip_zero list x.view torch.distributed.get_world_size train.Trainer.train outputs.max prediction.cpu.numpy.cpu transforms.append self.global_pooling_conv torch.isinf self.logger.add_text model.modules torch.utils.data.random_split self.total_samples.torch.tensor.to.cpu mat.min filter train.Trainer.state_dict ax.imshow apex.parallel.DistributedDataParallel.to tasks.get_per_task_classes len self.proj_bn utils.get_regularizer n.self.model_old_dict.p.pow reg_loss.torch.tensor.to torchvision.transforms.functional.hflip utils.Label2Color self.bn1 self.device.n.self.model_temp.to.p.detach.pow torch.nn.GroupNorm ade_cmap Lambda numpy.array outputs.narrow lbl.label2color.transpose.astype self._std.reshape self.model_old torch.nn.functional.cross_entropy RuntimeError criterion model self.delta.items self.mod1 model.state_dict normalize_fn params.append par.torch.clone.to self.logger.add_figure self.get models.util.try_index ValueError enumerate torch.nn.Conv2d self.mod3 self.info model.head.parameters img.denorm.astype numpy.unique model.train n.self.score_plus_fisher.mean random.shuffle all labels.remove self.pool_red_conv results.items opts.backbone.models.__dict__.load_state_dict p.to fisher.items inputs.shape.labels_new.F.one_hot.float.permute.clone main self.transform self.book.get format _NETS.items utils.logger.Logger.close torch.sigmoid range dataset.transform.RandomHorizontalFlip task_dict.keys ax.set self.logger.close self.convs.clone PI callable loss.mean.item n.self.model_old_dict.p.pow.n.self.score_plus_fisher.sum isinstance torch.save EWC copy.deepcopy torch.nn.Sequential torch.nn.init.xavier_normal_ self.lde_loss.item dropout utils.Subset self.total_samples.torch.tensor.to self.modules logger.add_scalar apex.parallel.DistributedDataParallel.eval outputs_no_bgk.labels.sum open self.FocalLoss.super.__init__ self.confusion_matrix.torch.tensor.to.cpu torchvision.transforms.functional.resize p.torch.clone.detach.cpu utils.loss.IcarlLoss blocks.append self.confusion_matrix.sum mask.float.mean torch.manual_seed utils.color_map torch.nn.ModuleList image_set.rstrip self.IdentityResidualBlock.super.__init__ numpy.zeros self.mod4 t.apply_ dataset.transform.ToTensor self.global_pooling_bn x.size.x.size.x.view.mean self._network.append utils.loss.UnbiasedCrossEntropy torch.index_select argparser.get_argparser model.cls.parameters torch.isnan self._stride_dilation cls.weight.data.copy_ torch.tensor.to self.licarl torchvision.transforms.functional.vflip x.size numpy.save torch.cuda.set_device utils.logger.Logger.add_scalar numpy.diag res.values self.n_classes.mask.label_pred.int.mask.label_true.astype.self.n_classes.np.bincount.reshape inputs.shape.torch.tensor.to torch.logsumexp collections.OrderedDict torch.utils.data.distributed.DistributedSampler self._network super.__init__ torch.clone os.listdir FileNotFoundError torch.where torch.nn.functional.elu torchvision.transforms.Lambda bitget new_bias.squeeze self.confusion_matrix.torch.tensor.to self.proj_conv self.regularizer.state_dict self.regularizer.penalty metrics.StreamSegMetrics.to_str metrics.get_results save_ckpt apex.parallel.DistributedDataParallel torch.optim.SGD.state_dict torch.device inputs.shape.labels_new.F.one_hot.float.permute.sum self.model_old.state_dict mask.float.sum max in_size.in_size.inputs.view.mean hasattr logging.error torch.mean numpy.zeros.astype self.add_module ret_samples.append focal_loss.sum scheduler.step apex.parallel.DistributedDataParallel.train self.lkd_loss.item tasks_voc.keys dataset.transform.Normalize n.self.score_old.to torch.distributed.barrier torch.distributed.init_process_group index.self.images.Image.open.convert functools.reduce torch.optim.SGD self.target_transform torchvision.transforms.functional.normalize confusion_matrix.cpu.numpy target.label2color.transpose torch.ones_like inputs.view model.body.parameters self.logger.add_scalar p.torch.clone.detach.to super self.reset_parameters print tuple
@developer Could please help me check this issue? May I pull a request to fix it? Thank you very much.