huggingfaceR
huggingfaceR copied to clipboard
Hugging Face state-of-the-art models in R
huggingfaceR
The goal of huggingfaceR
is to to bring state-of-the-art NLP models to
R. huggingfaceR
is built on top of Hugging Face’s
transformer library.
Installation
Prior to installing huggingfaceR
please be sure to have your python
environment set up correctly.
install.packages("reticulate")
library(reticulate)
install_miniconda()
If you are having issues, more detailed instructions on how to install and configure python can be found here.
After that you can install the development version of huggingfaceR from GitHub with:
# install.packages("devtools")
devtools::install_github("farach/huggingfaceR")
Example
huggingfaceR
makes use of the transformer
pipline()
function to
quickly make pre-trained models available for use in R. In this example
we will load the distilbert-base-uncased-finetuned-sst-2-english
model
to obtain sentiment scores.
library(huggingfaceR)
distilBERT <- hf_load_model("distilbert-base-uncased-finetuned-sst-2-english")
#>
#>
#> distilbert-base-uncased-finetuned-sst-2-english is ready for text-classification
With the model now loaded, we can begin using the model.
distilBERT("I like you. I love you")
#> [[1]]
#> [[1]]$label
#> [1] "POSITIVE"
#>
#> [[1]]$score
#> [1] 0.9998739
We can use this model in a typical tidyverse processing chunk. First we
load the tidyverse
.
library(tidyverse)
#> ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
#> ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
#> ✔ tibble 3.1.7 ✔ dplyr 1.0.9
#> ✔ tidyr 1.2.0 ✔ stringr 1.4.0
#> ✔ readr 2.1.2 ✔ forcats 0.5.1
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag() masks stats::lag()
We can use the huggingfaceR
hf_load_dataset()
function to pull in
the emotion Hugging Face
dataset. This dataset contains English Twitter messages with six basic
emotions: anger, fear, love, sadness, and surprise. We are interested in
how well the Distilbert model classifies these emotions as either a
positive or a negative sentiment.
emotion <- hf_load_dataset(
"emotion",
split = "test",
as_tibble = TRUE,
label_name = "int2str"
)
emotion_model <- emotion |>
transmute(
text,
emotion_id = label,
emotion_name = label_name,
distilBERT_sent = distilBERT(text)
) |>
unnest_wider(distilBERT_sent)
glimpse(emotion_model)
#> Rows: 2,000
#> Columns: 5
#> $ text <chr> "im feeling rather rotten so im not very ambitious right …
#> $ emotion_id <dbl> 0, 0, 0, 1, 0, 4, 3, 1, 1, 3, 4, 0, 4, 1, 2, 0, 1, 0, 3, …
#> $ emotion_name <chr> "sadness", "sadness", "sadness", "joy", "sadness", "fear"…
#> $ label <chr> "NEGATIVE", "NEGATIVE", "POSITIVE", "POSITIVE", "NEGATIVE…
#> $ score <dbl> 0.9998109, 0.9994603, 0.9993082, 0.9868246, 0.9996492, 0.…
We can use ggplot2
to visualize the results.
emotion_model |>
mutate(
label = paste0("Distilbert class:\n", label),
emotion_name = str_to_title(emotion_name)
) |>
ggplot(aes(x = emotion_name, y = score, color = label)) +
geom_boxplot(show.legend = FALSE, outlier.alpha = 0.4, ) +
scale_color_manual(values = c("#D55E00", "#6699CC")) +
facet_wrap(~ label) +
labs(
title = "Reviewing Distilbert classification predictions",
x = "Original label",
y = "Model score",
caption = "source:\nhttps://huggingface.co/datasets/emotion"
) +
theme_minimal() +
theme(
plot.title = element_text(hjust = 0.5),
axis.text.x = element_text(angle = 45),
axis.title.y = element_text(margin = margin(t = 0, r = 10, b = 0, l = 0)),
axis.title.x = element_text(margin = margin(t = 10, r = 0, b = 0, l = 0))
)
