pytorch3d
pytorch3d copied to clipboard
Rendering point clouds with perspective camera and specified intrinsics with Pulsar backend
Hi there!
Goal: I am attempting to use PyTorch3d with Pulsar to render images from point clouds of an outdoor scene.
Setup:
The ground truth image from the camera looks like this (720x1280 resolution):
The RGB image is loaded from a numpy file named "rgb_img_save.npy" in the attached zip folder.
I collected the depth image from the same camera and saved it as "depth_img_save.npy" under the attached zip folder.
I also have the camera extrinsics (position and orientation) in a 4x4 transformation matrix saved as "mat_pose_save.npy" in the attached zip folder (at the bottom of this issue).
My camera intrinsics as defined as follows: WIDTH = 1_280 HEIGHT = 720 FOCAL_LENGTH = 529. PRINCIPAL_PT_X = 631.0499 PRINCIPAL_PT_Y = 348.0125
Sanity Check with PyTorch3D
As a sanity check, I project the RGB image into the world coordinates using the pytorch3d.implicitron.tools.point_cloud_utils.get_rgbd_point_cloud
function, and render the image back into 2D with pytorch3d.renderer.PointsRenderer:
# Import statements
import matplotlib.pyplot as plt
from pytorch3d.renderer import PerspectiveCameras, PointsRasterizationSettings, PointsRasterizer, PointsRenderer, AlphaCompositor
from pytorch3d.implicitron.tools.point_cloud_utils import get_rgbd_point_cloud
from pytorch3d.structures import Pointclouds
# Constants
WIDTH = 1_280
HEIGHT = 720
FOCAL_LENGTH = 529.
PRINCIPAL_PT_X = 631.0499
PRINCIPAL_PT_Y = 348.0125
device = torch.device("cuda")
# Load our data
rgb_img_load = np.load('rgb_img_save.npy') # (1, 3, 720, 1280), uint8
depth_img_load = np.load('depth_img_save.npy') # (1, 1, 720, 1280), float32
mat_pose_load = np.load('mat_pose_save.npy') # (4, 4), float32
rgb_img_torch = torch.from_numpy(rgb_img_load).to(device)
depth_img_torch = torch.from_numpy(depth_img_load).to(device)
mat_pose_torch = torch.from_numpy(mat_pose_load).to(device)
# Define camera
focal_length_torch = torch.tensor([[FOCAL_LENGTH]]).to(device) # (1, 1)
principal_point_torch = torch.tensor([[PRINCIPAL_PT_X, PRINCIPAL_PT_Y]]).to(device) # (1, 2)
rot_mat_torch = mat_pose_torch[:3,:3].unsqueeze(0) # (1, 3, 3)
trans_mat_torch = mat_pose_torch[:3,3].unsqueeze(0) # (1, 3)
img_size_torch = torch.tensor([[HEIGHT, WIDTH]]).to(device) # (1, 2)
cameras = PerspectiveCameras(focal_length=focal_length_torch, principal_point=principal_point_torch, R=rot_mat_torch, T=trans_mat_torch, in_ndc=False, image_size=img_size_torch, device=device)
# Create point cloud
point_cloud_torch = get_rgbd_point_cloud(camera=cameras, image_rgb=rgb_img_torch, depth_map=depth_img_torch, euclidean=False)
# Get features from point cloud
pc_points = point_cloud_torch.points_packed() # (720*1280, 3)
pc_colors = point_cloud_torch.features_packed().type(torch.float32) / 255. # (720*1280, 3)
pc_rad = torch.ones(WIDTH*HEIGHT, dtype=torch.float32, device=device) # (720*1280)
pc_colors_alpha = torch.cat([pc_colors, torch.ones((WIDTH*HEIGHT, 1), device=device)], dim=1)
pc_combined_alpha = Pointclouds(points=[pc_points], features=[pc_colors_alpha])
# Render
raster_settings = PointsRasterizationSettings(
image_size=(HEIGHT,WIDTH),
radius = 0.003,
points_per_pixel = 10,
bin_size = 0
)
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
renderer = PointsRenderer(
rasterizer=rasterizer,
compositor=AlphaCompositor()
)
images = renderer(pc_combined_alpha)
plt.figure(figsize=(10, 10))
plt.imshow(images[0, ..., :3].cpu().numpy())
plt.axis("off")
plt.show()
The rendered image looks correct! (The red and blue channels are flipped, but that's ok)
Attempting to use Pulsar backend to render image I then tried to perform the same reprojection and achieve the same result using Pulsar to speed up the rendering. I originally used the same camera definition.
raster_settings = PointsRasterizationSettings(
image_size=(HEIGHT,WIDTH),
radius = 0.0003,
points_per_pixel = 1,
bin_size = 0
)
renderer = PulsarPointsRenderer(
rasterizer=PointsRasterizer(cameras=cameras, raster_settings=raster_settings),
n_channels=4
).to(device)
images = renderer(pc_combined_alpha, gamma=(1e-5,),
bg_col=torch.tensor([0.0, 1.0, 0.0, 1.0], dtype=torch.float32, device=device),
znear=[.1], zfar=[100.0])
plt.figure(figsize=(10, 10))
plt.imshow(images[0, ..., :3].cpu().numpy())
plt.axis("off")
plt.show()
The rendered picture is just the background green pixels.
I then tried redefining the camera from scratch, starting with ignoring the principal point, and just incorporating the focal length.
cameras = PerspectiveCameras(device=device, R=rot_mat_torch, T=trans_mat_torch, focal_length=focal_length_torch)
raster_settings = PointsRasterizationSettings(
image_size=(HEIGHT,WIDTH),
radius = 0.0003,
points_per_pixel = 1,
bin_size = 0
)
renderer = PulsarPointsRenderer(
rasterizer=PointsRasterizer(cameras=cameras, raster_settings=raster_settings),
n_channels=4
).to(device)
images = renderer(pc_combined_alpha, gamma=(1e-5,),
bg_col=torch.tensor([0.0, 1.0, 0.0, 1.0], dtype=torch.float32, device=device),
znear=[.1], zfar=[100.0])
plt.figure(figsize=(10, 10))
plt.imshow(images[0, ..., :3].cpu().numpy())
plt.axis("off")
plt.show()
quit()
It looks like the spheres are there; just really big. So I kept scaling the focal length down.
Setting focal_length=focal_length_torch*.0015
in the above code:
Now we're getting closer! But I'm still not sure what the actual focal length Pulsar expects, nor the principal point, because the edges are still the background.
I also tried using the basic Pulsar backend (without the unified framework). So, I first got the camera parameters in the basic Pulsar format by using pytorch3d.utils.pulsar_from_cameras_projection
on the original perspective camera definition above:
pulsar_cam_params = pulsar_from_cameras_projection(cameras, img_size_torch)
renderer = Renderer(WIDTH, HEIGHT, WIDTH*HEIGHT, right_handed_system=False).to(device)
# Render.
image = renderer(
pc_points,
pc_colors,
pc_rad*.1,
pulsar_cam_params[0],
1.0e-5, # Renderer blending parameter gamma, in [1., 1e-5].
100.0, # Maximum depth.
)
plt.figure(figsize=(10, 10))
plt.imshow(image.cpu().numpy())
plt.axis("off")
plt.show()
quit()
But the output is a completely blank image (white).
Would anyone have any suggestions for how the Pulsar camera should be defined using the original camera intrinsics to get the expected ground truth image? Truly appreciate your time and help! Thanks!