pytorch3d
pytorch3d copied to clipboard
Installation issue with conda python 3.9; incompatible with RTX 3090 (needs CUDA >=11.1)
🐛 Bugs / Unexpected behaviors
Cannot import pytorch3d after doing a fresh install following INSTALL.md
.
Instructions To Reproduce the Issue:
Note that I initially tried installing with the latest pytorch 1.12 with cudakit 11.6 to be compatible with my 3090, but that didn't work so I fell back to the exact instructions in INSTALL.md
.
conda create -n dev python=3.9
conda activate dev
conda install -c pytorch pytorch=1.9.1 torchvision cudatoolkit=10.2
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c bottler nvidiacub
pip install scikit-image matplotlib imageio plotly opencv-python
pip install black usort flake8 flake8-bugbear flake8-comprehensions
conda install pytorch3d -c pytorch3d
I did not go through with conda install -c bottler nvidiacub
since it wanted to 'upgrade' my pytorch to CPU only.
The conda logs from it (why it wants to downgrade could be indicative of an issue):
Collecting package metadata (current_repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: done
==> WARNING: A newer version of conda exists. <==
current version: 4.12.0
latest version: 4.13.0
Please update conda by running
$ conda update -n base -c defaults conda
## Package Plan ##
environment location: /home/zhsh/miniconda3/envs/dev
added / updated specs:
- nvidiacub
The following packages will be downloaded:
package | build
---------------------------|-----------------
blas-2.112 | mkl 12 KB conda-forge
blas-devel-3.9.0 | 12_linux64_mkl 11 KB conda-forge
cffi-1.15.1 | py39he91dace_0 229 KB conda-forge
ffmpeg-4.3.2 | h37c90e5_3 9.9 MB conda-forge
future-0.18.2 | py39hf3d152e_5 713 KB conda-forge
gmp-6.2.1 | h58526e2_0 806 KB conda-forge
gnutls-3.6.13 | h85f3911_1 2.0 MB conda-forge
lame-3.100 | h7f98852_1001 496 KB conda-forge
libblas-3.9.0 | 12_linux64_mkl 12 KB conda-forge
libcblas-3.9.0 | 12_linux64_mkl 12 KB conda-forge
liblapack-3.9.0 | 12_linux64_mkl 12 KB conda-forge
liblapacke-3.9.0 | 12_linux64_mkl 12 KB conda-forge
libprotobuf-3.18.1 | h780b84a_0 2.6 MB conda-forge
mkl-2021.4.0 | h8d4b97c_729 219.1 MB conda-forge
mkl-devel-2021.4.0 | ha770c72_730 25 KB conda-forge
mkl-include-2021.4.0 | h8d4b97c_729 694 KB conda-forge
nettle-3.6 | he412f7d_0 6.5 MB conda-forge
openh264-2.1.1 | h780b84a_0 1.5 MB conda-forge
pycparser-2.21 | pyhd8ed1ab_0 100 KB conda-forge
pytorch-1.9.1 |cpu_py39hc5866cc_3 45.2 MB conda-forge
sleef-3.5.1 | h9b69904_2 1.5 MB conda-forge
torchvision-0.11.3 |cpu_py39h955d6d4_2 7.1 MB conda-forge
x264-1!161.3030 | h7f98852_1 2.5 MB conda-forge
------------------------------------------------------------
Total: 300.7 MB
The following NEW packages will be INSTALLED:
cffi conda-forge/linux-64::cffi-1.15.1-py39he91dace_0
ffmpeg conda-forge/linux-64::ffmpeg-4.3.2-h37c90e5_3
future conda-forge/linux-64::future-0.18.2-py39hf3d152e_5
gmp conda-forge/linux-64::gmp-6.2.1-h58526e2_0
gnutls conda-forge/linux-64::gnutls-3.6.13-h85f3911_1
lame conda-forge/linux-64::lame-3.100-h7f98852_1001
libprotobuf conda-forge/linux-64::libprotobuf-3.18.1-h780b84a_0
nettle conda-forge/linux-64::nettle-3.6-he412f7d_0
nvidiacub bottler/linux-64::nvidiacub-1.10.0-0
openh264 conda-forge/linux-64::openh264-2.1.1-h780b84a_0
pycparser conda-forge/noarch::pycparser-2.21-pyhd8ed1ab_0
sleef conda-forge/linux-64::sleef-3.5.1-h9b69904_2
x264 conda-forge/linux-64::x264-1!161.3030-h7f98852_1
The following packages will be UPDATED:
pytorch pytorch::pytorch-1.9.1-py3.9_cuda10.2~ --> conda-forge::pytorch-1.9.1-cpu_py39hc5866cc_3
torchvision pytorch/noarch::torchvision-0.2.2-py_3 --> conda-forge/linux-64::torchvision-0.11.3-cpu_py39h955d6d4_2
The following packages will be DOWNGRADED:
blas 2.115-mkl --> 2.112-mkl
blas-devel 3.9.0-15_linux64_mkl --> 3.9.0-12_linux64_mkl
libblas 3.9.0-15_linux64_mkl --> 3.9.0-12_linux64_mkl
libcblas 3.9.0-15_linux64_mkl --> 3.9.0-12_linux64_mkl
liblapack 3.9.0-15_linux64_mkl --> 3.9.0-12_linux64_mkl
liblapacke 3.9.0-15_linux64_mkl --> 3.9.0-12_linux64_mkl
mkl 2022.1.0-h84fe81f_915 --> 2021.4.0-h8d4b97c_729
mkl-devel 2022.1.0-ha770c72_916 --> 2021.4.0-ha770c72_730
mkl-include 2022.1.0-h84fe81f_915 --> 2021.4.0-h8d4b97c_729
Conda logs from conda install pytorch3d -c pytorch3d
is attached (too long for inline)
pytorch3d_conda_install_log.txt
I have no idea why there are so many conflicts...
After the above installation, when I do conda list
, I see pytorch3d:
# packages in environment at /home/zhsh/miniconda3/envs/dev:
#
# Name Version Build Channel
_libgcc_mutex 0.1 conda_forge conda-forge
_openmp_mutex 4.5 2_kmp_llvm conda-forge
attrs 21.4.0 pypi_0 pypi
black 22.6.0 pypi_0 pypi
blas 2.115 mkl conda-forge
blas-devel 3.9.0 15_linux64_mkl conda-forge
bzip2 1.0.8 h7f98852_4 conda-forge
ca-certificates 2022.6.15 ha878542_0 conda-forge
click 8.1.3 pypi_0 pypi
cudatoolkit 10.2.89 h713d32c_10 conda-forge
cycler 0.11.0 pypi_0 pypi
flake8 4.0.1 pypi_0 pypi
flake8-bugbear 22.7.1 pypi_0 pypi
flake8-comprehensions 3.10.0 pypi_0 pypi
fonttools 4.34.4 pypi_0 pypi
freetype 2.10.4 h0708190_1 conda-forge
giflib 5.2.1 h36c2ea0_2 conda-forge
imageio 2.19.3 pypi_0 pypi
jpeg 9e h166bdaf_2 conda-forge
kiwisolver 1.4.3 pypi_0 pypi
lcms2 2.12 hddcbb42_0 conda-forge
ld_impl_linux-64 2.36.1 hea4e1c9_2 conda-forge
lerc 3.0 h9c3ff4c_0 conda-forge
libblas 3.9.0 15_linux64_mkl conda-forge
libcblas 3.9.0 15_linux64_mkl conda-forge
libcst 0.4.6 pypi_0 pypi
libdeflate 1.12 h166bdaf_0 conda-forge
libffi 3.4.2 h7f98852_5 conda-forge
libgcc-ng 12.1.0 h8d9b700_16 conda-forge
libgfortran-ng 12.1.0 h69a702a_16 conda-forge
libgfortran5 12.1.0 hdcd56e2_16 conda-forge
libgomp 12.1.0 h8d9b700_16 conda-forge
liblapack 3.9.0 15_linux64_mkl conda-forge
liblapacke 3.9.0 15_linux64_mkl conda-forge
libnsl 2.0.0 h7f98852_0 conda-forge
libpng 1.6.37 h753d276_3 conda-forge
libstdcxx-ng 12.1.0 ha89aaad_16 conda-forge
libtiff 4.4.0 hc85c160_1 conda-forge
libuuid 2.32.1 h7f98852_1000 conda-forge
libuv 1.43.0 h7f98852_0 conda-forge
libwebp 1.2.2 h3452ae3_0 conda-forge
libwebp-base 1.2.2 h7f98852_1 conda-forge
libxcb 1.13 h7f98852_1004 conda-forge
libzlib 1.2.12 h166bdaf_1 conda-forge
llvm-openmp 14.0.4 he0ac6c6_0 conda-forge
lz4-c 1.9.3 h9c3ff4c_1 conda-forge
matplotlib 3.5.2 pypi_0 pypi
mccabe 0.6.1 pypi_0 pypi
mkl 2022.1.0 h84fe81f_915 conda-forge
mkl-devel 2022.1.0 ha770c72_916 conda-forge
mkl-include 2022.1.0 h84fe81f_915 conda-forge
moreorless 0.4.0 pypi_0 pypi
mypy-extensions 0.4.3 pypi_0 pypi
ncurses 6.3 h27087fc_1 conda-forge
networkx 2.8.4 pypi_0 pypi
ninja 1.11.0 h924138e_0 conda-forge
numpy 1.23.0 py39hba7629e_0 conda-forge
opencv-python 4.6.0.66 pypi_0 pypi
openjpeg 2.4.0 hb52868f_1 conda-forge
openssl 3.0.5 h166bdaf_0 conda-forge
packaging 21.3 pypi_0 pypi
pathspec 0.9.0 pypi_0 pypi
pillow 9.2.0 py39hae2aec6_0 conda-forge
pip 22.1.2 pyhd8ed1ab_0 conda-forge
platformdirs 2.5.2 pypi_0 pypi
plotly 5.9.0 pypi_0 pypi
pthread-stubs 0.4 h36c2ea0_1001 conda-forge
pycodestyle 2.8.0 pypi_0 pypi
pyflakes 2.4.0 pypi_0 pypi
pyparsing 3.0.9 pypi_0 pypi
python 3.9.13 h2660328_0_cpython conda-forge
python-dateutil 2.8.2 pypi_0 pypi
python_abi 3.9 2_cp39 conda-forge
pytorch 1.9.1 py3.9_cuda10.2_cudnn7.6.5_0 pytorch
pywavelets 1.3.0 pypi_0 pypi
pyyaml 6.0 pypi_0 pypi
readline 8.1.2 h0f457ee_0 conda-forge
scikit-image 0.19.3 pypi_0 pypi
scipy 1.8.1 pypi_0 pypi
setuptools 63.1.0 py39hf3d152e_0 conda-forge
six 1.16.0 pyh6c4a22f_0 conda-forge
sqlite 3.39.0 h4ff8645_0 conda-forge
stdlibs 2022.6.8 pypi_0 pypi
tbb 2021.5.0 h924138e_1 conda-forge
tenacity 8.0.1 pypi_0 pypi
tifffile 2022.5.4 pypi_0 pypi
tk 8.6.12 h27826a3_0 conda-forge
toml 0.10.2 pypi_0 pypi
tomli 2.0.1 pypi_0 pypi
torchvision 0.2.2 py_3 pytorch
trailrunner 1.2.1 pypi_0 pypi
typing-inspect 0.7.1 pypi_0 pypi
typing_extensions 4.3.0 pyha770c72_0 conda-forge
tzdata 2022a h191b570_0 conda-forge
usort 1.0.2 pypi_0 pypi
wheel 0.37.1 pyhd8ed1ab_0 conda-forge
xorg-libxau 1.0.9 h7f98852_0 conda-forge
xorg-libxdmcp 1.1.3 h7f98852_0 conda-forge
xz 5.2.5 h516909a_1 conda-forge
zlib 1.2.12 h166bdaf_1 conda-forge
zstd 1.5.2 h8a70e8d_2 conda-forge
However, I can't seem to import it
>>> import pytorch3d
Python 3.9.13 | packaged by conda-forge | (main, May 27 2022, 16:58:50)
[GCC 10.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'pytorch3d'
pip list
with dev
activated produces:
Package Version
----------------------------- --------
actionlib 1.13.2
angles 1.9.13
attrs 21.4.0
black 22.6.0
bondpy 1.8.6
camera-calibration 1.15.3
camera-calibration-parsers 1.12.0
catkin 0.8.10
click 8.1.3
controller-manager 0.19.5
controller-manager-msgs 0.19.5
cv-bridge 1.15.0
cycler 0.11.0
diagnostic-analysis 1.10.4
diagnostic-common-diagnostics 1.10.4
diagnostic-updater 1.10.4
dynamic-reconfigure 1.7.1
flake8 4.0.1
flake8-bugbear 22.7.1
flake8-comprehensions 3.10.0
fonttools 4.34.4
gazebo_plugins 2.9.2
gazebo_ros 2.9.2
gencpp 0.6.5
geneus 3.0.0
genlisp 0.4.18
genmsg 0.5.16
gennodejs 2.0.2
genpy 0.6.15
image-geometry 1.15.0
imageio 2.19.3
interactive-markers 1.12.0
joint_state_publisher 1.15.0
joint_state_publisher_gui 1.15.0
kiwisolver 1.4.3
laser_geometry 1.6.7
libcst 0.4.6
matplotlib 3.5.2
mccabe 0.6.1
message-filters 1.15.13
moreorless 0.4.0
moveit_commander 1.1.9
moveit-core 1.1.9
moveit_ros_planning_interface 1.1.9
moveit_ros_visualization 1.1.9
mypy-extensions 0.4.3
networkx 2.8.4
numpy 1.23.0
opencv-python 4.6.0.66
packaging 21.3
pathspec 0.9.0
Pillow 9.2.0
pip 22.1.2
platformdirs 2.5.2
plotly 5.9.0
pr2_controller_manager 1.8.20
pycodestyle 2.8.0
pyflakes 2.4.0
pyparsing 3.0.9
python-dateutil 2.8.2
python-qt-binding 0.4.4
PyWavelets 1.3.0
PyYAML 6.0
qt-dotgraph 0.4.2
qt-gui 0.4.2
qt-gui-cpp 0.4.2
qt-gui-py-common 0.4.2
resource_retriever 1.12.6
ros_numpy 0.0.5
rosbag 1.15.13
rosboost-cfg 1.15.8
rosclean 1.15.8
roscreate 1.15.8
rosgraph 1.15.13
roslaunch 1.15.13
roslib 1.15.8
roslint 0.12.0
roslz4 1.15.13
rosmake 1.15.8
rosmaster 1.15.13
rosmsg 1.15.13
rosnode 1.15.13
rosparam 1.15.13
rospy 1.15.13
rosservice 1.15.13
rostest 1.15.13
rostopic 1.15.13
rosunit 1.15.8
roswtf 1.15.13
rqt_action 0.4.9
rqt_bag 0.5.1
rqt_bag_plugins 0.5.1
rqt_console 0.4.11
rqt_dep 0.4.12
rqt_graph 0.4.14
rqt_gui 0.5.2
rqt_gui_py 0.5.2
rqt_image_view 0.4.16
rqt_launch 0.4.9
rqt_logger_level 0.4.11
rqt-moveit 0.5.10
rqt_msg 0.4.10
rqt_nav_view 0.5.7
rqt_plot 0.4.13
rqt_pose_view 0.5.11
rqt_publisher 0.4.10
rqt_py_common 0.5.2
rqt_py_console 0.4.10
rqt-reconfigure 0.5.4
rqt-robot-dashboard 0.5.8
rqt-robot-monitor 0.5.13
rqt_robot_steering 0.5.12
rqt_runtime_monitor 0.5.9
rqt-rviz 0.7.0
rqt_service_caller 0.4.10
rqt_shell 0.4.11
rqt_srv 0.4.9
rqt_tf_tree 0.6.2
rqt_top 0.4.10
rqt_topic 0.4.12
rqt_web 0.4.10
rviz 1.14.10
scikit-image 0.19.3
scipy 1.8.1
sensor-msgs 1.13.1
setuptools 63.1.0
six 1.16.0
smach 2.5.0
smach-ros 2.5.0
smclib 1.8.6
srdfdom 0.6.3
stdlibs 2022.6.8
tenacity 8.0.1
tf 1.13.2
tf-conversions 1.13.2
tf2-geometry-msgs 0.7.5
tf2-kdl 0.7.5
tf2-py 0.7.5
tf2-ros 0.7.5
tifffile 2022.5.4
toml 0.10.2
tomli 2.0.1
topic-tools 1.15.13
torch 1.9.1
torchvision 0.2.2
trailrunner 1.2.1
typing_extensions 4.3.0
typing-inspect 0.7.1
urdfdom-py 0.4.6
usort 1.0.2
wheel 0.37.1
xacro 1.14.10
Update: I managed to install pytorch3d by running the commands again (for some reason), but it forced an update to pytorch's CPU only version. Upgrading to the latest pytorch (1.12.0 with CUDA 11.6) failed due to incompatibility; what version of pytorch can I upgrade to while maintaining compatibility with the latest pytorch3d and my 3090 graphics card?
Installation log; note the update of pytorch down to its CPU only versions
added / updated specs:
- pytorch3d
The following packages will be downloaded:
package | build
---------------------------|-----------------
blas-2.112 | mkl 12 KB conda-forge
dataclasses-0.8 | pyhc8e2a94_3 10 KB conda-forge
future-0.18.2 | py39hf3d152e_5 713 KB conda-forge
iopath-0.1.9 | pyhd8ed1ab_0 27 KB conda-forge
libblas-3.9.0 | 12_linux64_mkl 12 KB conda-forge
libcblas-3.9.0 | 12_linux64_mkl 12 KB conda-forge
liblapacke-3.9.0 | 12_linux64_mkl 12 KB conda-forge
nettle-3.6 | he412f7d_0 6.5 MB conda-forge
openh264-2.1.1 | h780b84a_0 1.5 MB conda-forge
portalocker-2.5.1 | py39hf3d152e_0 29 KB conda-forge
pytorch-1.9.1 |cpu_py39hc5866cc_3 45.2 MB conda-forge
pytorch3d-0.6.2 |py39_cu102_pyt191 20.7 MB pytorch3d
sleef-3.5.1 | h9b69904_2 1.5 MB conda-forge
x264-1!161.3030 | h7f98852_1 2.5 MB conda-forge
------------------------------------------------------------
Total: 78.6 MB
The following NEW packages will be INSTALLED:
cffi conda-forge/linux-64::cffi-1.15.1-py39he91dace_0
colorama conda-forge/noarch::colorama-0.4.5-pyhd8ed1ab_0
dataclasses conda-forge/noarch::dataclasses-0.8-pyhc8e2a94_3
ffmpeg conda-forge/linux-64::ffmpeg-4.3.2-h37c90e5_3
future conda-forge/linux-64::future-0.18.2-py39hf3d152e_5
fvcore conda-forge/noarch::fvcore-0.1.5.post20220512-pyhd8ed1ab_0
gmp conda-forge/linux-64::gmp-6.2.1-h58526e2_0
gnutls conda-forge/linux-64::gnutls-3.6.13-h85f3911_1
iopath conda-forge/noarch::iopath-0.1.9-pyhd8ed1ab_0
lame conda-forge/linux-64::lame-3.100-h7f98852_1001
libprotobuf conda-forge/linux-64::libprotobuf-3.18.1-h780b84a_0
nettle conda-forge/linux-64::nettle-3.6-he412f7d_0
openh264 conda-forge/linux-64::openh264-2.1.1-h780b84a_0
portalocker conda-forge/linux-64::portalocker-2.5.1-py39hf3d152e_0
pycparser conda-forge/noarch::pycparser-2.21-pyhd8ed1ab_0
pytorch3d pytorch3d/linux-64::pytorch3d-0.6.2-py39_cu102_pyt191
pyyaml conda-forge/linux-64::pyyaml-6.0-py39hb9d737c_4
sleef conda-forge/linux-64::sleef-3.5.1-h9b69904_2
tabulate conda-forge/noarch::tabulate-0.8.10-pyhd8ed1ab_0
termcolor conda-forge/noarch::termcolor-1.1.0-pyhd8ed1ab_3
tqdm conda-forge/noarch::tqdm-4.64.0-pyhd8ed1ab_0
x264 conda-forge/linux-64::x264-1!161.3030-h7f98852_1
yacs conda-forge/noarch::yacs-0.1.8-pyhd8ed1ab_0
yaml conda-forge/linux-64::yaml-0.2.5-h7f98852_2
The following packages will be UPDATED:
pytorch pytorch::pytorch-1.9.1-py3.9_cuda10.2~ --> conda-forge::pytorch-1.9.1-cpu_py39hc5866cc_3
torchvision pytorch/noarch::torchvision-0.2.2-py_3 --> conda-forge/linux-64::torchvision-0.11.3-cpu_py39h955d6d4_2
The following packages will be DOWNGRADED:
blas 2.115-mkl --> 2.112-mkl
blas-devel 3.9.0-15_linux64_mkl --> 3.9.0-12_linux64_mkl
libblas 3.9.0-15_linux64_mkl --> 3.9.0-12_linux64_mkl
libcblas 3.9.0-15_linux64_mkl --> 3.9.0-12_linux64_mkl
liblapack 3.9.0-15_linux64_mkl --> 3.9.0-12_linux64_mkl
liblapacke 3.9.0-15_linux64_mkl --> 3.9.0-12_linux64_mkl
mkl 2022.1.0-h84fe81f_915 --> 2021.4.0-h8d4b97c_729
mkl-devel 2022.1.0-ha770c72_916 --> 2021.4.0-ha770c72_730
mkl-include 2022.1.0-h84fe81f_915 --> 2021.4.0-h8d4b97c_729
Proceed ([y]/n)?
Downloading and Extracting Packages
portalocker-2.5.1 | 29 KB | #################################################################################### | 100%
nettle-3.6 | 6.5 MB | #################################################################################### | 100%
liblapacke-3.9.0 | 12 KB | #################################################################################### | 100%
libcblas-3.9.0 | 12 KB | #################################################################################### | 100%
future-0.18.2 | 713 KB | #################################################################################### | 100%
openh264-2.1.1 | 1.5 MB | #################################################################################### | 100%
iopath-0.1.9 | 27 KB | #################################################################################### | 100%
libblas-3.9.0 | 12 KB | #################################################################################### | 100%
dataclasses-0.8 | 10 KB | #################################################################################### | 100%
pytorch3d-0.6.2 | 20.7 MB | #################################################################################### | 100%
blas-2.112 | 12 KB | #################################################################################### | 100%
x264-1!161.3030 | 2.5 MB | #################################################################################### | 100%
pytorch-1.9.1 | 45.2 MB | #################################################################################### | 100%
sleef-3.5.1 | 1.5 MB | #################################################################################### | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
From the failed installation log of the latest pytorch, it seems that pytorch3d doesn't support CUDA >=11.1 yet? If so, then it is currently incompatible with the RTX 3090 which requires CUDA >=11.1.
pytorch3d -> cudatoolkit[version='>=10.2,<10.3']
pytorch3d -> pytorch==1.9.1 -> cudatoolkit[version='10.2|10.2.*|11.0|11.0.*|>=11.1,<11.2|11.1|11.1.*|>=11.2,<12.0a0|>=11.6,<11.7|>=11.3,<11.4|>=11.5,<11.6|>=10.1,<10.2|>=11.0,<11.1|>=9.2,<9.3|>=10.0,<10.1|>=11.2,<12']
Hello,
I ran into the same issues but fortunately can resolve them. Can you try this requirements.txt? My python is 3.8 with cuda 11.3 but it seems not to be your problem.
# This file may be used to create an environment using:
# $ conda create --name <env> --file <this file>
# platform: linux-64
_libgcc_mutex=0.1=conda_forge
_openmp_mutex=4.5=2_kmp_llvm
absl-py=1.1.0=pypi_0
aiohttp=3.8.1=pypi_0
aiosignal=1.2.0=pypi_0
alembic=1.8.0=pypi_0
alsa-lib=1.2.3.2=h166bdaf_0
aom=3.3.0=h27087fc_1
astunparse=1.6.3=pypi_0
async-timeout=4.0.2=pypi_0
attr=2.5.1=h166bdaf_0
attrs=21.4.0=pypi_0
beautifulsoup4=4.11.1=py38h06a4308_0
blas=1.0=mkl
brotlipy=0.7.0=py38h27cfd23_1003
bzip2=1.0.8=h7b6447c_0
c-ares=1.18.1=h7f8727e_0
ca-certificates=2022.6.15=ha878542_0
cachetools=5.2.0=pypi_0
cairo=1.16.0=ha61ee94_1011
certifi=2022.6.15=py38h06a4308_0
cffi=1.15.0=py38hd667e15_1
chardet=4.0.0=py38h06a4308_1003
charset-normalizer=2.0.4=pyhd3eb1b0_0
click=8.1.3=pypi_0
cloudpickle=2.1.0=pypi_0
conda=4.13.0=py38h06a4308_0
conda-build=3.21.9=py38h06a4308_0
conda-package-handling=1.8.1=py38h7f8727e_0
cryptography=37.0.1=py38h9ce1e76_0
cucim=22.4.0=pypi_0
cudatoolkit=11.3.1=h2bc3f7f_2
cudnn=8.4.1.50=hed8a83a_0
cycler=0.11.0=pypi_0
databricks-cli=0.16.6=pypi_0
dbus=1.13.6=h5008d03_3
docker=5.0.3=pypi_0
einops=0.4.1=pypi_0
entrypoints=0.4=pypi_0
expat=2.4.8=h27087fc_0
ffmpeg=4.4.1=h964e5f1_4
fftw=3.3.10=nompi_h77c792f_102
filelock=3.7.1=pypi_0
fire=0.4.0=pypi_0
flask=2.1.2=pypi_0
flatbuffers=1.12=pypi_0
font-ttf-dejavu-sans-mono=2.37=hd3eb1b0_0
font-ttf-inconsolata=2.001=hcb22688_0
font-ttf-source-code-pro=2.030=hd3eb1b0_0
font-ttf-ubuntu=0.83=h8b1ccd4_0
fontconfig=2.14.0=h8e229c2_0
fonts-anaconda=1=h8fa9717_0
fonts-conda-ecosystem=1=hd3eb1b0_0
fonttools=4.33.3=pypi_0
freeglut=3.2.2=h9c3ff4c_1
freetype=2.11.0=h70c0345_0
frozenlist=1.3.0=pypi_0
fsspec=2022.5.0=pypi_0
fvcore=0.1.5.post20220512=pypi_0
gast=0.4.0=pypi_0
gdown=4.4.0=pypi_0
gettext=0.21.0=hf68c758_0
giflib=5.2.1=h7b6447c_0
gitdb=4.0.9=pypi_0
gitpython=3.1.27=pypi_0
glob2=0.7=pyhd3eb1b0_0
gmp=6.2.1=h295c915_3
gnutls=3.6.15=he1e5248_0
google-auth=2.7.0=pypi_0
google-auth-oauthlib=0.4.6=pypi_0
google-pasta=0.2.0=pypi_0
graphite2=1.3.14=h295c915_1
greenlet=1.1.2=pypi_0
grpcio=1.46.3=pypi_0
gst-plugins-base=1.20.2=hcf0ee16_0
gstreamer=1.20.2=hd4edc92_1
gunicorn=20.1.0=pypi_0
gviz-api=1.10.0=pypi_0
h5py=3.7.0=pypi_0
harfbuzz=4.3.0=hf9f4e7c_0
hdf5=1.12.1=h70be1eb_2
huggingface-hub=0.7.0=pypi_0
icu=70.1=h27087fc_0
idna=3.3=pyhd3eb1b0_0
imagecodecs=2022.2.22=pypi_0
imageio=2.19.3=pypi_0
importlib-metadata=4.11.4=pypi_0
importlib-resources=5.7.1=pypi_0
intel-openmp=2021.4.0=h06a4308_3561
iopath=0.1.9=pypi_0
itk=5.2.1.post1=pypi_0
itk-core=5.2.1.post1=pypi_0
itk-filtering=5.2.1.post1=pypi_0
itk-io=5.2.1.post1=pypi_0
itk-numerics=5.2.1.post1=pypi_0
itk-registration=5.2.1.post1=pypi_0
itk-segmentation=5.2.1.post1=pypi_0
itsdangerous=2.1.2=pypi_0
jack=1.9.18=hfd4fe87_1001
jasper=2.0.33=ha77e612_0
jinja2=3.1.2=pypi_0
jpeg=9e=h7f8727e_0
jsonschema=4.6.1=pypi_0
keras=2.9.0=pypi_0
keras-preprocessing=1.1.2=pypi_0
keyutils=1.6.1=h166bdaf_0
kiwisolver=1.4.2=pypi_0
krb5=1.19.3=h3790be6_0
lame=3.100=h7b6447c_0
lcms2=2.12=h3be6417_0
ld_impl_linux-64=2.38=h1181459_1
lerc=3.0=h295c915_0
libarchive=3.5.2=h5de8990_0
libblas=3.9.0=12_linux64_mkl
libcap=2.64=ha37c62d_0
libcblas=3.9.0=12_linux64_mkl
libclang=14.0.1=pypi_0
libclang13=14.0.4=default_h3a83d3e_0
libcups=2.3.3=hf5a7f15_1
libcurl=7.82.0=h0b77cf5_0
libdb=6.2.32=h6a678d5_1
libdeflate=1.10=h7f98852_0
libdrm=2.4.111=h166bdaf_0
libedit=3.1.20210910=h7f8727e_0
libev=4.33=h7f8727e_1
libevent=2.1.10=h9b69904_4
libffi=3.4.2=h295c915_4
libflac=1.3.4=h27087fc_0
libgcc-ng=12.1.0=h8d9b700_16
libgfortran-ng=11.2.0=h00389a5_1
libgfortran5=11.2.0=h1234567_1
libglib=2.70.2=h174f98d_4
libglu=9.0.0=hf484d3e_1
libiconv=1.16=h7f8727e_2
libidn2=2.3.2=h7f8727e_0
liblapack=3.9.0=12_linux64_mkl
liblapacke=3.9.0=12_linux64_mkl
liblief=0.11.5=h295c915_1
libllvm14=14.0.4=he0ac6c6_0
libnghttp2=1.46.0=hce63b2e_0
libnsl=2.0.0=h7f98852_0
libogg=1.3.5=h27cfd23_1
libopencv=4.5.5=py38hc65905f_11
libopus=1.3.1=h7b6447c_0
libpciaccess=0.16=h516909a_0
libpng=1.6.37=hbc83047_0
libpq=14.3=hd77ab85_0
libprotobuf=3.20.1=h4ff587b_0
libsndfile=1.0.31=h9c3ff4c_1
libssh2=1.10.0=h8f2d780_0
libstdcxx-ng=12.1.0=ha89aaad_16
libtasn1=4.16.0=h27cfd23_0
libtiff=4.4.0=h0fcbabc_0
libtool=2.4.6=h295c915_1008
libudev1=249=h166bdaf_2
libunistring=0.9.10=h27cfd23_0
libuuid=2.32.1=h7f98852_1000
libva=2.14.0=h7f98852_0
libvorbis=1.3.7=h7b6447c_0
libvpx=1.11.0=h295c915_0
libwebp=1.2.2=h55f646e_0
libwebp-base=1.2.2=h7f8727e_0
libxcb=1.13=h1bed415_1
libxkbcommon=1.0.3=he3ba5ed_0
libxml2=2.9.14=h22db469_0
libzlib=1.2.12=h166bdaf_0
llvm-openmp=14.0.4=he0ac6c6_0
lmdb=1.3.0=pypi_0
lz4-c=1.9.3=h295c915_1
mako=1.2.0=pypi_0
markdown=3.3.7=pypi_0
markupsafe=2.1.1=pypi_0
matplotlib=3.5.2=pypi_0
mkl=2021.4.0=h06a4308_640
mkl-service=2.4.0=py38h7f8727e_0
mkl_fft=1.3.1=py38hd3c417c_0
mkl_random=1.2.2=py38h51133e4_0
mlflow=1.26.1=pypi_0
monai=0.9.0=pypi_0
multidict=6.0.2=pypi_0
mysql-common=8.0.29=haf5c9bc_1
mysql-libs=8.0.29=h28c427c_1
ncurses=6.3=h5eee18b_3
nettle=3.7.3=hbbd107a_1
networkx=2.8.3=pypi_0
nibabel=3.2.2=pypi_0
nspr=4.33=h295c915_0
nss=3.78=h2350873_0
numpy=1.23.0=pypi_0
numpy-base=1.22.3=py38hf524024_0
oauthlib=3.2.0=pypi_0
opencv=4.5.5=py38h578d9bd_11
openh264=2.1.1=h4ff587b_0
openslide-python=1.1.2=pypi_0
openssl=1.1.1q=h166bdaf_0
opt-einsum=3.3.0=pypi_0
packaging=21.3=pypi_0
pandas=1.4.2=pypi_0
patchelf=0.13=h295c915_0
pcre=8.45=h295c915_0
pillow=9.2.0=pypi_0
pip=21.2.4=py38h06a4308_0
pixman=0.40.0=h7f8727e_1
pkginfo=1.8.2=pyhd3eb1b0_0
portalocker=2.4.0=pypi_0
prometheus-client=0.14.1=pypi_0
prometheus-flask-exporter=0.20.2=pypi_0
protobuf=3.19.4=pypi_0
psutil=5.9.1=pypi_0
pulseaudio=14.0=hbc9ff1d_7
py-lief=0.11.5=py38h295c915_1
py-opencv=4.5.5=py38h7f3c49e_11
pyasn1=0.4.8=pypi_0
pyasn1-modules=0.2.8=pypi_0
pycosat=0.6.3=py38h7b6447c_1
pycparser=2.21=pyhd3eb1b0_0
pydeprecate=0.3.2=pypi_0
pyjwt=2.4.0=pypi_0
pynrrd=0.4.3=pypi_0
pyopenssl=22.0.0=pyhd3eb1b0_0
pyparsing=3.0.9=pypi_0
pyrsistent=0.18.1=pypi_0
pysocks=1.7.1=py38h06a4308_0
python=3.8.13=h582c2e5_0_cpython
python-dateutil=2.8.2=pypi_0
python-libarchive-c=2.9=pyhd3eb1b0_1
python_abi=3.8=2_cp38
pytorch=1.12.0=py3.8_cuda11.3_cudnn8.3.2_0
pytorch-ignite=0.4.8=pypi_0
pytorch-lightning=1.6.4=pypi_0
pytorch-mutex=1.0=cuda
pytorch3d=0.6.2=pypi_0
pytz=2022.1=py38h06a4308_0
pywavelets=1.3.0=pypi_0
pyyaml=6.0=pypi_0
qt-main=5.15.3=hf97cb25_2
querystring-parser=1.2.4=pypi_0
readline=8.1.2=h7f8727e_1
regex=2022.6.2=pypi_0
requests=2.28.0=py38h06a4308_0
requests-oauthlib=1.3.1=pypi_0
ripgrep=12.1.1=0
rsa=4.8=pypi_0
ruamel_yaml=0.15.100=py38h27cfd23_0
scikit-image=0.19.2=pypi_0
scipy=1.8.1=pypi_0
setuptools=61.2.0=py38h06a4308_0
six=1.16.0=pyhd3eb1b0_1
smmap=5.0.0=pypi_0
soupsieve=2.3.2.post1=pypi_0
sqlalchemy=1.4.37=pypi_0
sqlite=3.38.5=hc218d9a_0
sqlparse=0.4.2=pypi_0
svt-av1=1.1.0=h27087fc_1
tabulate=0.8.10=pypi_0
tensorboard=2.9.0=pypi_0
tensorboard-data-server=0.6.1=pypi_0
tensorboard-plugin-3d=1.0.3=pypi_0
tensorboard-plugin-profile=2.8.0=pypi_0
tensorboard-plugin-wit=1.8.1=pypi_0
tensorboardx=2.5.1=pypi_0
tensorflow=2.9.1=pypi_0
tensorflow-estimator=2.9.0=pypi_0
tensorflow-io-gcs-filesystem=0.26.0=pypi_0
termcolor=1.1.0=pypi_0
tifffile=2022.5.4=pypi_0
tk=8.6.12=h1ccaba5_0
tokenizers=0.12.1=pypi_0
torchaudio=0.12.0=py38_cu113
torchmetrics=0.9.0=pypi_0
torchvision=0.13.0=py38_cu113
tqdm=4.64.0=py38h06a4308_0
transformers=4.19.2=pypi_0
typing_extensions=4.1.1=pyh06a4308_0
urllib3=1.26.9=py38h06a4308_0
websocket-client=1.3.2=pypi_0
werkzeug=2.1.2=pypi_0
wheel=0.37.1=pyhd3eb1b0_0
wrapt=1.14.1=pypi_0
x264=1!161.3030=h7f98852_1
x265=3.5=h924138e_3
xorg-fixesproto=5.0=h7f98852_1002
xorg-inputproto=2.3.2=h7f98852_1002
xorg-kbproto=1.0.7=h7f98852_1002
xorg-libice=1.0.10=h7f98852_0
xorg-libsm=1.2.3=hd9c2040_1000
xorg-libx11=1.7.2=h7f98852_0
xorg-libxau=1.0.9=h7f98852_0
xorg-libxext=1.3.4=h7f98852_1
xorg-libxfixes=5.0.3=h7f98852_1004
xorg-libxi=1.7.10=h7f98852_0
xorg-libxrender=0.9.10=h7f98852_1003
xorg-renderproto=0.11.1=h7f98852_1002
xorg-xextproto=7.3.0=h7f98852_1002
xorg-xproto=7.0.31=h27cfd23_1007
xz=5.2.5=h7f8727e_1
yacs=0.1.8=pypi_0
yaml=0.2.5=h7b6447c_0
yarl=1.7.2=pypi_0
zipp=3.8.0=pypi_0
zlib=1.2.12=h166bdaf_0
zstd=1.5.2=ha4553b6_0
@tmquan Hi thank you for your response! I'm having trouble installing those, what conda channels are you using?
PackagesNotFoundError: The following packages are not available from current channels:
- torchvision==0.13.0=py38_cu113
- regex==2022.6.2=pypi_0
- fvcore==0.1.5.post20220512=pypi_0
- itk-core==5.2.1.post1=pypi_0
- scikit-image==0.19.2=pypi_0
- astunparse==1.6.3=pypi_0
- openslide-python==1.1.2=pypi_0
- pyasn1-modules==0.2.8=pypi_0
- zipp==3.8.0=pypi_0
- werkzeug==2.1.2=pypi_0
- greenlet==1.1.2=pypi_0
- querystring-parser==1.2.4=pypi_0
- tensorflow==2.9.1=pypi_0
- imageio==2.19.3=pypi_0
- requests-oauthlib==1.3.1=pypi_0
- markdown==3.3.7=pypi_0
- cloudpickle==2.1.0=pypi_0
- jinja2==3.1.2=pypi_0
- tifffile==2022.5.4=pypi_0
- gviz-api==1.10.0=pypi_0
- google-auth-oauthlib==0.4.6=pypi_0
- pytorch-mutex==1.0=cuda
- tensorflow-io-gcs-filesystem==0.26.0=pypi_0
- scipy==1.8.1=pypi_0
- gitpython==3.1.27=pypi_0
- cycler==0.11.0=pypi_0
- gast==0.4.0=pypi_0
- attrs==21.4.0=pypi_0
- importlib-resources==5.7.1=pypi_0
- docker==5.0.3=pypi_0
- prometheus-client==0.14.1=pypi_0
- pyasn1==0.4.8=pypi_0
- smmap==5.0.0=pypi_0
- torchmetrics==0.9.0=pypi_0
- einops==0.4.1=pypi_0
- tensorboard-data-server==0.6.1=pypi_0
- multidict==6.0.2=pypi_0
- websocket-client==1.3.2=pypi_0
- yacs==0.1.8=pypi_0
- tensorflow-estimator==2.9.0=pypi_0
- entrypoints==0.4=pypi_0
- psutil==5.9.1=pypi_0
- grpcio==1.46.3=pypi_0
- pandas==1.4.2=pypi_0
- google-auth==2.7.0=pypi_0
- flask==2.1.2=pypi_0
- async-timeout==4.0.2=pypi_0
- h5py==3.7.0=pypi_0
- pytorch-lightning==1.6.4=pypi_0
- itk-segmentation==5.2.1.post1=pypi_0
- frozenlist==1.3.0=pypi_0
- markupsafe==2.1.1=pypi_0
- pyparsing==3.0.9=pypi_0
- pyrsistent==0.18.1=pypi_0
- sqlparse==0.4.2=pypi_0
- cucim==22.4.0=pypi_0
- torchaudio==0.12.0=py38_cu113
- tensorboard-plugin-profile==2.8.0=pypi_0
- kiwisolver==1.4.2=pypi_0
- opt-einsum==3.3.0=pypi_0
- packaging==21.3=pypi_0
- absl-py==1.1.0=pypi_0
- protobuf==3.19.4=pypi_0
- aiosignal==1.2.0=pypi_0
- yarl==1.7.2=pypi_0
- pytorch3d==0.6.2=pypi_0
- cachetools==5.2.0=pypi_0
- fire==0.4.0=pypi_0
- tabulate==0.8.10=pypi_0
- jsonschema==4.6.1=pypi_0
- tensorboard==2.9.0=pypi_0
- mako==1.2.0=pypi_0
- soupsieve==2.3.2.post1=pypi_0
- itk-numerics==5.2.1.post1=pypi_0
- filelock==3.7.1=pypi_0
- importlib-metadata==4.11.4=pypi_0
- pyyaml==6.0=pypi_0
- networkx==2.8.3=pypi_0
- gunicorn==20.1.0=pypi_0
- wrapt==1.14.1=pypi_0
- flatbuffers==1.12=pypi_0
- matplotlib==3.5.2=pypi_0
- transformers==4.19.2=pypi_0
- pynrrd==0.4.3=pypi_0
- pytorch-ignite==0.4.8=pypi_0
- nibabel==3.2.2=pypi_0
- iopath==0.1.9=pypi_0
- alembic==1.8.0=pypi_0
- itk-io==5.2.1.post1=pypi_0
- gitdb==4.0.9=pypi_0
- sqlalchemy==1.4.37=pypi_0
- huggingface-hub==0.7.0=pypi_0
- itk==5.2.1.post1=pypi_0
- itsdangerous==2.1.2=pypi_0
- portalocker==2.4.0=pypi_0
- tensorboard-plugin-wit==1.8.1=pypi_0
- pytorch==1.12.0=py3.8_cuda11.3_cudnn8.3.2_0
- termcolor==1.1.0=pypi_0
- databricks-cli==0.16.6=pypi_0
- imagecodecs==2022.2.22=pypi_0
- tokenizers==0.12.1=pypi_0
- fsspec==2022.5.0=pypi_0
- itk-filtering==5.2.1.post1=pypi_0
- tensorboardx==2.5.1=pypi_0
- pywavelets==1.3.0=pypi_0
- numpy==1.23.0=pypi_0
- lmdb==1.3.0=pypi_0
- aiohttp==3.8.1=pypi_0
- click==8.1.3=pypi_0
- gdown==4.4.0=pypi_0
- google-pasta==0.2.0=pypi_0
- itk-registration==5.2.1.post1=pypi_0
- keras==2.9.0=pypi_0
- libclang==14.0.1=pypi_0
- keras-preprocessing==1.1.2=pypi_0
- tensorboard-plugin-3d==1.0.3=pypi_0
- prometheus-flask-exporter==0.20.2=pypi_0
- rsa==4.8=pypi_0
- pyjwt==2.4.0=pypi_0
- monai==0.9.0=pypi_0
- python-dateutil==2.8.2=pypi_0
- fonttools==4.33.3=pypi_0
- pillow==9.2.0=pypi_0
- mlflow==1.26.1=pypi_0
- pydeprecate==0.3.2=pypi_0
- oauthlib==3.2.0=pypi_0
Current channels:
- https://conda.anaconda.org/conda-forge/linux-64
- https://conda.anaconda.org/conda-forge/noarch
- https://repo.anaconda.com/pkgs/main/linux-64
- https://repo.anaconda.com/pkgs/main/noarch
- https://repo.anaconda.com/pkgs/r/linux-64
- https://repo.anaconda.com/pkgs/r/noarch
PyTorch3D on Linux does not have prebuilt cpu-only packages. If you have a cpu-only pytorch and torchvision installed in your environment, plus fvcore and iopath, you should be easily able to build from source straight from github with pip install "git+https://github.com/facebookresearch/pytorch3d.git@stable"
.
For CUDA 11.6 and PyTorch 1.12.0 in a conda environment installing the nightly build of pytorch3d should work. This is too new for the latest PyTorch3D release.
conda install pytorch3d -c pytorch3d-nightly
does not work for me with CUDA 11.6 and PyTorch 1.12.0
Can you paste your conda list
and the error you are getting?
@bottler conda install pytorch3d -c pytorch3d-nightly
for me also does not work with CUDA 11.6 and PyTorch 1.12.0 right now.
My conda list
# Name Version Build Channel
_libgcc_mutex 0.1 conda_forge conda-forge
_openmp_mutex 4.5 2_kmp_llvm conda-forge
attrs 21.4.0 pypi_0 pypi
black 22.6.0 pypi_0 pypi
blas 2.112 mkl conda-forge
blas-devel 3.9.0 12_linux64_mkl conda-forge
bzip2 1.0.8 h7f98852_4 conda-forge
ca-certificates 2022.6.15 ha878542_0 conda-forge
cffi 1.15.1 py39he91dace_0 conda-forge
click 8.1.3 pypi_0 pypi
colorama 0.4.5 pyhd8ed1ab_0 conda-forge
cudatoolkit 11.6.0 hecad31d_10 conda-forge
cycler 0.11.0 pypi_0 pypi
dataclasses 0.8 pyhc8e2a94_3 conda-forge
ffmpeg 4.3 hf484d3e_0 pytorch
flake8 4.0.1 pypi_0 pypi
flake8-bugbear 22.7.1 pypi_0 pypi
flake8-comprehensions 3.10.0 pypi_0 pypi
fonttools 4.34.4 pypi_0 pypi
freetype 2.10.4 h0708190_1 conda-forge
future 0.18.2 py39hf3d152e_5 conda-forge
fvcore 0.1.5.post20220512 pyhd8ed1ab_0 conda-forge
giflib 5.2.1 h36c2ea0_2 conda-forge
gmp 6.2.1 h58526e2_0 conda-forge
gnutls 3.6.13 h85f3911_1 conda-forge
imageio 2.19.3 pypi_0 pypi
iopath 0.1.9 pyhd8ed1ab_0 conda-forge
jpeg 9e h166bdaf_2 conda-forge
kiwisolver 1.4.3 pypi_0 pypi
lame 3.100 h7f98852_1001 conda-forge
lcms2 2.12 hddcbb42_0 conda-forge
ld_impl_linux-64 2.36.1 hea4e1c9_2 conda-forge
lerc 3.0 h9c3ff4c_0 conda-forge
libblas 3.9.0 12_linux64_mkl conda-forge
libcblas 3.9.0 12_linux64_mkl conda-forge
libcst 0.4.6 pypi_0 pypi
libdeflate 1.12 h166bdaf_0 conda-forge
libffi 3.4.2 h7f98852_5 conda-forge
libgcc-ng 12.1.0 h8d9b700_16 conda-forge
libgfortran-ng 12.1.0 h69a702a_16 conda-forge
libgfortran5 12.1.0 hdcd56e2_16 conda-forge
libgomp 12.1.0 h8d9b700_16 conda-forge
libiconv 1.17 h166bdaf_0 conda-forge
liblapack 3.9.0 12_linux64_mkl conda-forge
liblapacke 3.9.0 12_linux64_mkl conda-forge
libnsl 2.0.0 h7f98852_0 conda-forge
libopenblas 0.3.20 pthreads_h78a6416_0 conda-forge
libpng 1.6.37 h753d276_3 conda-forge
libprotobuf 3.20.1 h6239696_0 conda-forge
libstdcxx-ng 12.1.0 ha89aaad_16 conda-forge
libtiff 4.4.0 hc85c160_1 conda-forge
libuuid 2.32.1 h7f98852_1000 conda-forge
libuv 1.43.0 h7f98852_0 conda-forge
libwebp 1.2.2 h3452ae3_0 conda-forge
libwebp-base 1.2.2 h7f98852_1 conda-forge
libxcb 1.13 h7f98852_1004 conda-forge
libzlib 1.2.12 h166bdaf_1 conda-forge
llvm-openmp 14.0.4 he0ac6c6_0 conda-forge
lz4-c 1.9.3 h9c3ff4c_1 conda-forge
matplotlib 3.5.2 pypi_0 pypi
mccabe 0.6.1 pypi_0 pypi
mkl 2021.4.0 h8d4b97c_729 conda-forge
mkl-devel 2021.4.0 ha770c72_730 conda-forge
mkl-include 2021.4.0 h8d4b97c_729 conda-forge
moreorless 0.4.0 pypi_0 pypi
mypy-extensions 0.4.3 pypi_0 pypi
ncurses 6.3 h27087fc_1 conda-forge
nettle 3.6 he412f7d_0 conda-forge
networkx 2.8.4 pypi_0 pypi
ninja 1.11.0 h924138e_0 conda-forge
numpy 1.23.1 py39hba7629e_0 conda-forge
openblas 0.3.20 pthreads_h320a7e8_0 conda-forge
opencv-python 4.6.0.66 pypi_0 pypi
openh264 2.1.1 h780b84a_0 conda-forge
openjpeg 2.4.0 hb52868f_1 conda-forge
openssl 3.0.5 h166bdaf_0 conda-forge
packaging 21.3 pypi_0 pypi
pathspec 0.9.0 pypi_0 pypi
pillow 9.2.0 py39hae2aec6_0 conda-forge
pip 22.1.2 pyhd8ed1ab_0 conda-forge
platformdirs 2.5.2 pypi_0 pypi
plotly 5.9.0 pypi_0 pypi
portalocker 2.5.1 py39hf3d152e_0 conda-forge
pthread-stubs 0.4 h36c2ea0_1001 conda-forge
pycodestyle 2.8.0 pypi_0 pypi
pycparser 2.21 pyhd8ed1ab_0 conda-forge
pyflakes 2.4.0 pypi_0 pypi
pyparsing 3.0.9 pypi_0 pypi
python 3.9.13 h2660328_0_cpython conda-forge
python-dateutil 2.8.2 pypi_0 pypi
python_abi 3.9 2_cp39 conda-forge
pytorch 1.12.0 py3.9_cuda11.6_cudnn8.3.2_0 pytorch
pytorch-mutex 1.0 cuda pytorch
pywavelets 1.3.0 pypi_0 pypi
pyyaml 6.0 py39hb9d737c_4 conda-forge
readline 8.1.2 h0f457ee_0 conda-forge
scikit-image 0.19.3 pypi_0 pypi
scipy 1.8.1 pypi_0 pypi
setuptools 63.1.0 py39hf3d152e_0 conda-forge
six 1.16.0 pyh6c4a22f_0 conda-forge
sleef 3.5.1 h9b69904_2 conda-forge
sqlite 3.39.0 h4ff8645_0 conda-forge
stdlibs 2022.6.8 pypi_0 pypi
tabulate 0.8.10 pyhd8ed1ab_0 conda-forge
tbb 2021.5.0 h924138e_1 conda-forge
tenacity 8.0.1 pypi_0 pypi
termcolor 1.1.0 pyhd8ed1ab_3 conda-forge
tifffile 2022.5.4 pypi_0 pypi
tk 8.6.12 h27826a3_0 conda-forge
toml 0.10.2 pypi_0 pypi
tomli 2.0.1 pypi_0 pypi
tqdm 4.64.0 pyhd8ed1ab_0 conda-forge
trailrunner 1.2.1 pypi_0 pypi
typing-inspect 0.7.1 pypi_0 pypi
typing_extensions 4.3.0 pyha770c72_0 conda-forge
tzdata 2022a h191b570_0 conda-forge
usort 1.0.2 pypi_0 pypi
wheel 0.37.1 pyhd8ed1ab_0 conda-forge
x264 1!161.3030 h7f98852_1 conda-forge
xorg-libxau 1.0.9 h7f98852_0 conda-forge
xorg-libxdmcp 1.1.3 h7f98852_0 conda-forge
xz 5.2.5 h516909a_1 conda-forge
yacs 0.1.8 pyhd8ed1ab_0 conda-forge
yaml 0.2.5 h7f98852_2 conda-forge
zlib 1.2.12 h166bdaf_1 conda-forge
zstd 1.5.2 h8a70e8d_2 conda-forge
The full log for conda install pytorch3d -c pytorch3d-nightly
consists of a bunch of version conflict messages, and for some reason I can't post it here... The short of it is:
UnsatisfiableError: The following specifications were found to be incompatible with a past
explicit spec that is not an explicit spec in this operation (pytorch):
- pytorch3d -> cudatoolkit[version='>=10.1,<10.2|>=10.2,<10.3|>=11.1,<11.2|>=11.3,<11.4|>=11.5,<11.6|>=11.6,<11.7|>=11.0,<11.1']
- pytorch3d -> pytorch==1.11.0 -> cudatoolkit[version='10.0|10.0.*|10.1|10.1.*|10.2|10.2.*|11.0|11.0.*|11.1|11.1.*|>=11.2,<12|>=11.2,<12.0a0|9.2|9.2.*']
- pytorch3d -> pytorch[version='1.10.0|1.11.0|1.9.1|1.9.0|1.10.2|1.10.1|1.8.1|1.8.0|1.12.0|1.7.1|1.7.0']
- pytorch3d -> torchvision[version='>=0.5'] -> pytorch[version='*|*|1.10|1.10|>=1.10.2,<1.11.0a0|>=1.11.0,<1.12.0a0|1.10.0.*|>=1.8.0|>=1.8.0|1.7.1.*',build='cuda*|cpu*|cuda*|cpu*|cuda*|cpu*']
So I'm guessing the nightly pytorch3d's only compatible with pytorch 1.11 for now, or it's a problem with finding a compatible version of torchvision? I didn't install torchvision together with pytorch because conda install pytorch torchvision torchaudio cudatoolkit=11.6 -c pytorch -c conda-forge
for some reason installs an older CPU version of pytorch.
Going to try installing torchvision on top of the current pytorch 1.12, then if that doesn't work, I'll try with pytorch 1.11
Strangely, installing torchvision with conda install torchvision -c pytorch
installs a very old torchvision pytorch/noarch::torchvision-0.2.2-py_3
, which does not satisfy pytorch3d's requirements. Instead, install with a specified version such as conda install torchvision=0.13.0 -c pytorch
. However, installing the nightly pytorch3d
still gives a similar error
UnsatisfiableError: The following specifications were found to be incompatible with a past
explicit spec that is not an explicit spec in this operation (pytorch):
- pytorch3d -> cudatoolkit[version='>=10.1,<10.2|>=10.2,<10.3|>=11.1,<11.2|>=11.3,<11.4|>=11.5,<11.6|>=11.6,<11.7|>=11.0,<11.1']
- pytorch3d -> pytorch==1.10.0 -> cudatoolkit[version='10.0|10.0.*|10.1|10.1.*|10.2|10.2.*|11.1|11.1.*|11.0|11.0.*|>=11.2,<12|>=11.2,<12.0a0|9.2|9.2.*']
- pytorch3d -> pytorch[version='1.10.0|1.10.2|1.9.0|1.10.1|1.9.1|1.8.0|1.11.0|1.12.0|1.8.1|1.7.1|1.7.0']
- pytorch3d -> torchvision[version='>=0.5'] -> pytorch[version='*|*|1.10|1.10|>=1.10.2,<1.11.0a0|>=1.11.0,<1.12.0a0|1.10.0.*|>=1.8.0|>=1.8.0|1.7.1.*',build='cpu*|cpu*|cuda*|cuda*|cpu*|cuda*']
With the full log https://pastebin.com/raw/2BgYQCgm
The current conda list
gives
_libgcc_mutex 0.1 conda_forge conda-forge
_openmp_mutex 4.5 2_kmp_llvm conda-forge
attrs 21.4.0 pypi_0 pypi
black 22.6.0 pypi_0 pypi
blas 2.115 mkl conda-forge
blas-devel 3.9.0 15_linux64_mkl conda-forge
brotlipy 0.7.0 py39hb9d737c_1004 conda-forge
bzip2 1.0.8 h7f98852_4 conda-forge
ca-certificates 2022.6.15 ha878542_0 conda-forge
certifi 2022.6.15 py39hf3d152e_0 conda-forge
cffi 1.15.1 py39he91dace_0 conda-forge
charset-normalizer 2.1.0 pyhd8ed1ab_0 conda-forge
click 8.1.3 pypi_0 pypi
cryptography 37.0.4 py39hd97740a_0 conda-forge
cudatoolkit 11.6.0 hecad31d_10 conda-forge
cycler 0.11.0 pypi_0 pypi
ffmpeg 4.3 hf484d3e_0 pytorch
flake8 4.0.1 pypi_0 pypi
flake8-bugbear 22.7.1 pypi_0 pypi
flake8-comprehensions 3.10.0 pypi_0 pypi
fonttools 4.34.4 pypi_0 pypi
freetype 2.10.4 h0708190_1 conda-forge
giflib 5.2.1 h36c2ea0_2 conda-forge
gmp 6.2.1 h58526e2_0 conda-forge
gnutls 3.6.13 h85f3911_1 conda-forge
idna 3.3 pyhd8ed1ab_0 conda-forge
imageio 2.19.3 pypi_0 pypi
jpeg 9e h166bdaf_2 conda-forge
kiwisolver 1.4.3 pypi_0 pypi
lame 3.100 h7f98852_1001 conda-forge
lcms2 2.12 hddcbb42_0 conda-forge
ld_impl_linux-64 2.36.1 hea4e1c9_2 conda-forge
lerc 3.0 h9c3ff4c_0 conda-forge
libblas 3.9.0 15_linux64_mkl conda-forge
libcblas 3.9.0 15_linux64_mkl conda-forge
libcst 0.4.6 pypi_0 pypi
libdeflate 1.12 h166bdaf_0 conda-forge
libffi 3.4.2 h7f98852_5 conda-forge
libgcc-ng 12.1.0 h8d9b700_16 conda-forge
libgfortran-ng 12.1.0 h69a702a_16 conda-forge
libgfortran5 12.1.0 hdcd56e2_16 conda-forge
libgomp 12.1.0 h8d9b700_16 conda-forge
libiconv 1.17 h166bdaf_0 conda-forge
liblapack 3.9.0 15_linux64_mkl conda-forge
liblapacke 3.9.0 15_linux64_mkl conda-forge
libnsl 2.0.0 h7f98852_0 conda-forge
libpng 1.6.37 h753d276_3 conda-forge
libstdcxx-ng 12.1.0 ha89aaad_16 conda-forge
libtiff 4.4.0 hc85c160_1 conda-forge
libuuid 2.32.1 h7f98852_1000 conda-forge
libwebp 1.2.2 h3452ae3_0 conda-forge
libwebp-base 1.2.2 h7f98852_1 conda-forge
libxcb 1.13 h7f98852_1004 conda-forge
libzlib 1.2.12 h166bdaf_2 conda-forge
llvm-openmp 14.0.4 he0ac6c6_0 conda-forge
lz4-c 1.9.3 h9c3ff4c_1 conda-forge
matplotlib 3.5.2 pypi_0 pypi
mccabe 0.6.1 pypi_0 pypi
mkl 2022.1.0 h84fe81f_915 conda-forge
mkl-devel 2022.1.0 ha770c72_916 conda-forge
mkl-include 2022.1.0 h84fe81f_915 conda-forge
moreorless 0.4.0 pypi_0 pypi
mypy-extensions 0.4.3 pypi_0 pypi
ncurses 6.3 h27087fc_1 conda-forge
nettle 3.6 he412f7d_0 conda-forge
networkx 2.8.4 pypi_0 pypi
numpy 1.23.1 py39hba7629e_0 conda-forge
opencv-python 4.6.0.66 pypi_0 pypi
openh264 2.1.1 h780b84a_0 conda-forge
openjpeg 2.4.0 hb52868f_1 conda-forge
openssl 1.1.1q h166bdaf_0 conda-forge
packaging 21.3 pypi_0 pypi
pathspec 0.9.0 pypi_0 pypi
pillow 9.2.0 py39hae2aec6_0 conda-forge
pip 22.1.2 pyhd8ed1ab_0 conda-forge
platformdirs 2.5.2 pypi_0 pypi
plotly 5.9.0 pypi_0 pypi
pthread-stubs 0.4 h36c2ea0_1001 conda-forge
pycodestyle 2.8.0 pypi_0 pypi
pycparser 2.21 pyhd8ed1ab_0 conda-forge
pyflakes 2.4.0 pypi_0 pypi
pyopenssl 22.0.0 pyhd8ed1ab_0 conda-forge
pyparsing 3.0.9 pypi_0 pypi
pysocks 1.7.1 py39hf3d152e_5 conda-forge
python 3.9.13 h9a8a25e_0_cpython conda-forge
python-dateutil 2.8.2 pypi_0 pypi
python_abi 3.9 2_cp39 conda-forge
pytorch 1.12.0 py3.9_cuda11.6_cudnn8.3.2_0 pytorch
pytorch-mutex 1.0 cuda pytorch
pywavelets 1.3.0 pypi_0 pypi
readline 8.1.2 h0f457ee_0 conda-forge
requests 2.28.1 pyhd8ed1ab_0 conda-forge
scikit-image 0.19.3 pypi_0 pypi
scipy 1.8.1 pypi_0 pypi
setuptools 63.2.0 py39hf3d152e_0 conda-forge
six 1.16.0 pyh6c4a22f_0 conda-forge
sqlite 3.39.1 h4ff8645_0 conda-forge
stdlibs 2022.6.8 pypi_0 pypi
tbb 2021.5.0 h924138e_1 conda-forge
tenacity 8.0.1 pypi_0 pypi
tifffile 2022.5.4 pypi_0 pypi
tk 8.6.12 h27826a3_0 conda-forge
toml 0.10.2 pypi_0 pypi
tomli 2.0.1 pypi_0 pypi
torchvision 0.13.0 py39_cu116 pytorch
trailrunner 1.2.1 pypi_0 pypi
typing-inspect 0.7.1 pypi_0 pypi
typing_extensions 4.3.0 pyha770c72_0 conda-forge
tzdata 2022a h191b570_0 conda-forge
urllib3 1.26.10 pyhd8ed1ab_0 conda-forge
usort 1.0.2 pypi_0 pypi
wheel 0.37.1 pyhd8ed1ab_0 conda-forge
xorg-libxau 1.0.9 h7f98852_0 conda-forge
xorg-libxdmcp 1.1.3 h7f98852_0 conda-forge
xz 5.2.5 h516909a_1 conda-forge
zlib 1.2.12 h166bdaf_2 conda-forge
zstd 1.5.2 h8a70e8d_2 conda-forge
Good news, finally found a version that's compatible with my system and pytorch3d:
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
Then install pytorch3d with
conda install pytorch3d -c pytorch3d-nightly
Is it possible to have some tracking of what pytorch versions are compatible for the stable and nightly builds in INSTALL.md
?
You can see exactly what conda builds are available for each release at https://anaconda.org/pytorch3d/pytorch3d/files (and in the INSTALL.md at the tag for the release, stable for the latest release) and you can see exactly the nightly builds at https://anaconda.org/pytorch3d-nightly/pytorch3d/files .
Ok it does not fully work for some reason; I can import torch
fine and
>>> torch.cuda.is_available()
True
>>> torch.cuda.get_device_name(0)
'NVIDIA GeForce RTX 3090'
but when I get an error with
>>> from pytorch3d.ops import iterative_closest_point
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/zhsh/miniconda3/envs/dev/lib/python3.9/site-packages/pytorch3d/ops/__init__.py", line 7, in <module>
from .ball_query import ball_query
File "/home/zhsh/miniconda3/envs/dev/lib/python3.9/site-packages/pytorch3d/ops/ball_query.py", line 10, in <module>
from pytorch3d import _C
ImportError: libtorch_cuda_cu.so: cannot open shared object file: No such file or directory
Could be caused by the downgrade of pytorch when installing pytorch3d; for some reason when installing it, it changed my pytorch from 1.11.0+cuda113 to 1.11.0+cuda112
pytorch 1.11.0 cuda112py39ha0cca9b_202 conda-forge
pytorch-mutex 1.0 cuda pytorch
pytorch3d 0.6.2 py39_cu113_pyt1110 pytorch3d-nightly
On a different machine with a 2080, I was able to run with no errors via
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=10.2 -c pytorch
conda install pytorch3d -c pytorch3d
downgrade of pytorch when installing pytorch3d
This is always a bad thing. If conda suggests doing that then something is wrong and the installation cannot proceed. Say NO to it. Maybe you can try again and if a downgrade comes up, can you report the conda list here?
I just did the above again on the 3090 machine
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
conda install pytorch3d -c pytorch3d-nightly
And do not have the same issue anymore... Perhaps it was the installation of some other package (maybe ros-noetic-desktop) that caused some inconsistencies... Need to investigate more.
This issue is stale because it has been open 30 days with no activity. Remove stale label or comment or this will be closed in 5 days.