fastMRI
fastMRI copied to clipboard
Error related to raw_sample_filter in _create_data_loader
Discussed in https://github.com/facebookresearch/fastMRI/discussions/263
Creating an issue with this - seems like some aspects of sample filtering are bugged with recent changes.
Originally posted by mouryarahul August 24, 2022
Hi,
I'm trying to run
python train_unet_demo.py \
--mode test \
--test_split test \
--challenge singlecoil \
--data_path ../../../FastMRI_DATASET/knee_singlecoil_train/ \
--resume_from_checkpoint unet/unet_demo/checkpoints/epoch=1-step=69484.ckpt
where ../../../FastMRI_DATASET/knee_singlecoil_train/
contains all three folders: singlecoil_test
, singlecoil_train
and singlecoil_val
However, I'm getting an error related to raw_sample_filter
in the case of the test dataset. Maybe I am missing something or doing something silly. Can someone please point out the mistake? Thanks!
Info about my environment: PyTorch version: 1.12.0+cu116 Is debug build: False CUDA used to build PyTorch: 11.6 ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04 LTS (x86_64) GCC version: (Ubuntu 11.2.0-19ubuntu1) 11.2.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35
Python version: 3.10.4 (main, Mar 31 2022, 08:41:55) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.15.0-46-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1070 Nvidia driver version: 515.65.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True
Versions of relevant libraries:
[pip3] numpy==1.22.3
[pip3] pytorch-lightning==1.7.2
[pip3] torch==1.12.0+cu116
[pip3] torchaudio==0.12.0+cu116
[pip3] torchmetrics==0.9.2
[pip3] torchvision==0.13.0+cu116
[conda] blas 1.0 mkl
[conda] mkl 2021.4.0 h06a4308_640
[conda] mkl-service 2.4.0 py310h7f8727e_0
[conda] mkl_fft 1.3.1 py310hd6ae3a3_0
[conda] mkl_random 1.2.2 py310h00e6091_0
[conda] numpy 1.22.3 py310hfa59a62_0
[conda] numpy-base 1.22.3 py310h9585f30_0
[conda] pytorch-lightning 1.7.2 pypi_0 pypi
[conda] torch 1.12.0+cu116 pypi_0 pypi
[conda] torchaudio 0.12.0+cu116 pypi_0 pypi
[conda] torchmetrics 0.9.2 pypi_0 pypi
[conda] torchvision 0.13.0+cu116 pypi_0 pypi
The full error msg:
Global seed set to 42
/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/torchmetrics/utilities/prints.py:36: UserWarning: Torchmetrics v0.9 introduced a new argument class property called full_state_update
that has not been set for this class (DistributedMetricSum). The property determines if update
by default needs access to the full metric state. If this is not the case, significant speedups can be achieved and we recommend setting this to False
. We provide an checking function from torchmetrics.utilities import check_forward_no_full_state
that can be used to check if the full_state_update=True
(old and potential slower behaviour, default for now) or if full_state_update=False
can be used safely.
warnings.warn(*args, **kwargs)
/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:446: LightningDeprecationWarning: Setting Trainer(gpus=1)
is deprecated in v1.7 and will be removed in v2.0. Please use Trainer(accelerator='gpu', devices=1)
instead.
rank_zero_deprecation(
/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/checkpoint_connector.py:52: LightningDeprecationWarning: Setting Trainer(resume_from_checkpoint=)
is deprecated in v1.5 and will be removed in v1.7. Please pass Trainer.fit(ckpt_path=)
directly instead.
rank_zero_deprecation(
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Global seed set to 42
Initializing distributed: GLOBAL_RANK: 0, MEMBER: 1/1
distributed_backend=nccl All distributed processes registered. Starting with 1 processes
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
Traceback (most recent call last):
File "/media/rahul/DATA/WorkSpace/Multimodal-Data-Processing/Projects/fastMRI/fastmri_examples/unet/train_unet_demo.py", line 191, in