dinov2
dinov2 copied to clipboard
mmcv installation issue
ModuleNotFoundError Traceback (most recent call last) Cell In[2], line 7 5 import torch 6 import torch.nn.functional as F ----> 7 from mmseg.apis import init_segmentor, inference_segmentor 9 import dinov2.eval.segmentation.models 12 class CenterPadding(torch.nn.Module):
File ~/anaconda3/envs/dinov2-extras/lib/python3.9/site-packages/mmseg/apis/init.py:2 1 # Copyright (c) OpenMMLab. All rights reserved. ----> 2 from .inference import inference_segmentor, init_segmentor, show_result_pyplot 3 from .test import multi_gpu_test, single_gpu_test 4 from .train import (get_root_logger, init_random_seed, set_random_seed, 5 train_segmentor)
File ~/anaconda3/envs/dinov2-extras/lib/python3.9/site-packages/mmseg/apis/inference.py:9 6 from mmcv.runner import load_checkpoint 8 from mmseg.datasets.pipelines import Compose ----> 9 from mmseg.models import build_segmentor 12 def init_segmentor(config, checkpoint=None, device='cuda:0'): 13 """Initialize a segmentor from config file. 14 15 Args: (...) 23 nn.Module: The constructed segmentor. 24 """
File ~/anaconda3/envs/dinov2-extras/lib/python3.9/site-packages/mmseg/models/init.py:2 1 # Copyright (c) OpenMMLab. All rights reserved. ----> 2 from .backbones import * # noqa: F401,F403 3 from .builder import (BACKBONES, HEADS, LOSSES, SEGMENTORS, build_backbone, 4 build_head, build_loss, build_segmentor) 5 from .decode_heads import * # noqa: F401,F403
File ~/anaconda3/envs/dinov2-extras/lib/python3.9/site-packages/mmseg/models/backbones/init.py:7 5 from .cgnet import CGNet 6 from .erfnet import ERFNet ----> 7 from .fast_scnn import FastSCNN 8 from .hrnet import HRNet 9 from .icnet import ICNet
File ~/anaconda3/envs/dinov2-extras/lib/python3.9/site-packages/mmseg/models/backbones/fast_scnn.py:7 4 from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule 5 from mmcv.runner import BaseModule ----> 7 from mmseg.models.decode_heads.psp_head import PPM 8 from mmseg.ops import resize 9 from ..builder import BACKBONES
File ~/anaconda3/envs/dinov2-extras/lib/python3.9/site-packages/mmseg/models/decode_heads/init.py:2 1 # Copyright (c) OpenMMLab. All rights reserved. ----> 2 from .ann_head import ANNHead 3 from .apc_head import APCHead 4 from .aspp_head import ASPPHead
File ~/anaconda3/envs/dinov2-extras/lib/python3.9/site-packages/mmseg/models/decode_heads/ann_head.py:8 6 from ..builder import HEADS 7 from ..utils import SelfAttentionBlock as _SelfAttentionBlock ----> 8 from .decode_head import BaseDecodeHead 11 class PPMConcat(nn.ModuleList): 12 """Pyramid Pooling Module that only concat the features of each layer. 13 14 Args: 15 pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid 16 Module. 17 """
File ~/anaconda3/envs/dinov2-extras/lib/python3.9/site-packages/mmseg/models/decode_heads/decode_head.py:11 9 from mmseg.ops import resize 10 from ..builder import build_loss ---> 11 from ..losses import accuracy 14 class BaseDecodeHead(BaseModule, metaclass=ABCMeta): 15 """Base class for BaseDecodeHead. 16 17 Args: (...) 51 init_cfg (dict or list[dict], optional): Initialization config dict. 52 """
File ~/anaconda3/envs/dinov2-extras/lib/python3.9/site-packages/mmseg/models/losses/init.py:6 3 from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, 4 cross_entropy, mask_cross_entropy) 5 from .dice_loss import DiceLoss ----> 6 from .focal_loss import FocalLoss 7 from .lovasz_loss import LovaszLoss 8 from .utils import reduce_loss, weight_reduce_loss, weighted_loss
File ~/anaconda3/envs/dinov2-extras/lib/python3.9/site-packages/mmseg/models/losses/focal_loss.py:6 4 import torch.nn as nn 5 import torch.nn.functional as F ----> 6 from mmcv.ops import sigmoid_focal_loss as _sigmoid_focal_loss 8 from ..builder import LOSSES 9 from .utils import weight_reduce_loss
File ~/anaconda3/envs/dinov2-extras/lib/python3.9/site-packages/mmcv/ops/init.py:2 1 # Copyright (c) OpenMMLab. All rights reserved. ----> 2 from .bbox import bbox_overlaps 3 from .border_align import BorderAlign, border_align 4 from .box_iou_rotated import box_iou_rotated
File ~/anaconda3/envs/dinov2-extras/lib/python3.9/site-packages/mmcv/ops/bbox.py:4
1 # Copyright (c) OpenMMLab. All rights reserved.
2 from ..utils import ext_loader
----> 4 ext_module = ext_loader.load_ext('_ext', ['bbox_overlaps'])
7 def bbox_overlaps(bboxes1, bboxes2, mode='iou', aligned=False, offset=0):
8 """Calculate overlap between two set of bboxes.
9
10 If aligned
is False
, then calculate the ious between each bbox
(...)
47 >>> assert tuple(bbox_overlaps(empty, empty).shape) == (0, 0)
48 """
File ~/anaconda3/envs/dinov2-extras/lib/python3.9/site-packages/mmcv/utils/ext_loader.py:13, in load_ext(name, funcs) 12 def load_ext(name, funcs): ---> 13 ext = importlib.import_module('mmcv.' + name) 14 for fun in funcs: 15 assert hasattr(ext, fun), f'{fun} miss in module {name}'
File ~/anaconda3/envs/dinov2-extras/lib/python3.9/importlib/init.py:127, in import_module(name, package) 125 break 126 level += 1 --> 127 return _bootstrap._gcd_import(name[level:], package, level)
ModuleNotFoundError: No module named 'mmcv._ext'
You seem to have installed the dependencies via conda, which specific platform are you using and could you perhaps share the output of conda env export
?
Hi @patricklabatut ,
when I first installed with conda env create -f conda-extras.yaml
This issue raised:
raise RuntimeError(CUDA_MISMATCH_MESSAGE.format(cuda_str_version, torch.version.cuda))
RuntimeError:
The detected CUDA version (9.1) mismatches the version that was used to compile
PyTorch (11.7). Please make sure to use the same CUDA versions.
[end of output]
note: This error originates from a subprocess, and is likely not a problem with pip.
ERROR: Failed building wheel for mmcv-full
ERROR: Could not build wheels for mmcv-full, which is required to install pyproject.toml-based projects
failed
CondaEnvException: Pip failed
However, the rest are installed so here is the conda env export:
channels:
- xformers
- pytorch
- nvidia
- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- antlr-python-runtime=4.9.3=pyhd8ed1ab_1
- blas=1.0=mkl
- brotlipy=0.7.0=py39h27cfd23_1003
- bzip2=1.0.8=h7b6447c_0
- ca-certificates=2023.05.30=h06a4308_0
- certifi=2023.7.22=py39h06a4308_0
- cffi=1.15.1=py39h5eee18b_3
- charset-normalizer=2.0.4=pyhd3eb1b0_0
- cryptography=41.0.2=py39h22a60cf_0
- cuda-cudart=11.7.99=0
- cuda-cupti=11.7.101=0
- cuda-libraries=11.7.1=0
- cuda-nvrtc=11.7.99=0
- cuda-nvtx=11.7.91=0
- cuda-runtime=11.7.1=0
- dataclasses=0.8=pyh6d0b6a4_7
- ffmpeg=4.2.2=h20bf706_0
- filelock=3.9.0=py39h06a4308_0
- freetype=2.12.1=h4a9f257_0
- fvcore=0.1.5.post20221221=pyhd8ed1ab_0
- giflib=5.2.1=h5eee18b_3
- gmp=6.2.1=h295c915_3
- gnutls=3.6.15=he1e5248_0
- idna=3.4=py39h06a4308_0
- intel-openmp=2023.1.0=hdb19cb5_46305
- iopath=0.1.9=pyhd8ed1ab_0
- jinja2=3.1.2=py39h06a4308_0
- jpeg=9e=h5eee18b_1
- lame=3.100=h7b6447c_0
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.38=h1181459_1
- lerc=3.0=h295c915_0
- libcublas=11.10.3.66=0
- libcufft=10.7.2.124=h4fbf590_0
- libcufile=1.7.2.10=0
- libcurand=10.3.3.141=0
- libcusolver=11.4.0.1=0
- libcusparse=11.7.4.91=0
- libdeflate=1.17=h5eee18b_0
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=11.2.0=h1234567_1
- libgomp=11.2.0=h1234567_1
- libidn2=2.3.4=h5eee18b_0
- libnpp=11.7.4.75=0
- libnvjpeg=11.8.0.2=0
- libopus=1.3.1=h7b6447c_0
- libpng=1.6.39=h5eee18b_0
- libstdcxx-ng=11.2.0=h1234567_1
- libtasn1=4.19.0=h5eee18b_0
- libtiff=4.5.1=h6a678d5_0
- libunistring=0.9.10=h27cfd23_0
- libvpx=1.7.0=h439df22_0
- libwebp=1.2.4=h11a3e52_1
- libwebp-base=1.2.4=h5eee18b_1
- lz4-c=1.9.4=h6a678d5_0
- markupsafe=2.1.1=py39h7f8727e_0
- mkl=2023.1.0=h213fc3f_46343
- mkl-service=2.4.0=py39h5eee18b_1
- mkl_fft=1.3.6=py39h417a72b_1
- mkl_random=1.2.2=py39h417a72b_1
- mpmath=1.3.0=py39h06a4308_0
- ncurses=6.4=h6a678d5_0
- nettle=3.7.3=hbbd107a_1
- networkx=3.1=py39h06a4308_0
- numpy=1.25.2=py39h5f9d8c6_0
- numpy-base=1.25.2=py39hb5e798b_0
- omegaconf=2.3.0=pyhd8ed1ab_0
- openh264=2.1.1=h4ff587b_0
- openssl=3.0.10=h7f8727e_2
- packaging=23.1=py39h06a4308_0
- pillow=9.4.0=py39h6a678d5_0
- pip=23.2.1=py39h06a4308_0
- portalocker=2.3.0=py39h06a4308_1
- pycparser=2.21=pyhd3eb1b0_0
- pyopenssl=23.2.0=py39h06a4308_0
- pysocks=1.7.1=py39h06a4308_0
- python=3.9.17=h955ad1f_0
- pytorch=2.0.0=py3.9_cuda11.7_cudnn8.5.0_0
- pytorch-cuda=11.7=h778d358_5
- pytorch-mutex=1.0=cuda
- pyyaml=6.0=py39h5eee18b_1
- readline=8.2=h5eee18b_0
- requests=2.31.0=py39h06a4308_0
- setuptools=68.0.0=py39h06a4308_0
- sqlite=3.41.2=h5eee18b_0
- sympy=1.12=pyh04b8f61_3
- tabulate=0.8.10=py39h06a4308_0
- tbb=2021.8.0=hdb19cb5_0
- termcolor=2.1.0=py39h06a4308_0
- tk=8.6.12=h1ccaba5_0
- torchmetrics=0.10.3=pyhd8ed1ab_0
- torchtriton=2.0.0=py39
- torchvision=0.15.0=py39_cu117
- tqdm=4.65.0=py39hb070fc8_0
- typing_extensions=4.7.1=py39h06a4308_0
- tzdata=2023c=h04d1e81_0
- urllib3=1.26.16=py39h06a4308_0
- wheel=0.38.4=py39h06a4308_0
- x264=1!157.20191217=h7b6447c_0
- xformers=0.0.18=py39_cu11.8.0_pyt2.0.0
- xz=5.4.2=h5eee18b_0
- yacs=0.1.6=pyhd3eb1b0_1
- yaml=0.2.5=h7b6447c_0
- zlib=1.2.13=h5eee18b_0
- zstd=1.5.5=hc292b87_0
prefix: /home/shravan/anaconda3/envs/dinov2-extras```
Since the root cause of this error is :
RuntimeError(CUDA_MISMATCH_MESSAGE.format(cuda_str_version, torch.version.cuda))
RuntimeError:
The detected CUDA version (9.1) mismatches the version that was used to compile
PyTorch (11.7). Please make sure to use the same CUDA versions.
So I have used the instructions to set CUDA using below resource: setting-up-cuda-117-toolkit-
nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Tue_May__3_18:49:52_PDT_2022
Cuda compilation tools, release 11.7, V11.7.64
Build cuda_11.7.r11.7/compiler.31294372_0
My torch versions:
list | grep "torch"
pytorch 2.0.0 py3.9_cuda11.7_cudnn8.5.0_0 pytorch
pytorch-cuda 11.7 h778d358_5 pytorch
pytorch-mutex 1.0 cuda pytorch
torchmetrics 0.10.3 pyhd8ed1ab_0 conda-forge
torchtriton 2.0.0 py39 pytorch
torchvision 0.15.0 py39_cu117 pytorch
That's how I matched both CUDA and pytorch CUDA version
I have tested Segmentaion notebook, now it's working, Here is my final conda env:
name: dinov2-extras
channels:
- xformers
- pytorch
- nvidia
- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- antlr-python-runtime=4.9.3=pyhd8ed1ab_1
- blas=1.0=mkl
- brotlipy=0.7.0=py39h27cfd23_1003
- bzip2=1.0.8=h7b6447c_0
- ca-certificates=2023.05.30=h06a4308_0
- certifi=2023.7.22=py39h06a4308_0
- cffi=1.15.1=py39h5eee18b_3
- charset-normalizer=2.0.4=pyhd3eb1b0_0
- cryptography=41.0.2=py39h22a60cf_0
- cuda-cudart=11.7.99=0
- cuda-cupti=11.7.101=0
- cuda-libraries=11.7.1=0
- cuda-nvrtc=11.7.99=0
- cuda-nvtx=11.7.91=0
- cuda-runtime=11.7.1=0
- dataclasses=0.8=pyh6d0b6a4_7
- ffmpeg=4.2.2=h20bf706_0
- filelock=3.9.0=py39h06a4308_0
- freetype=2.12.1=h4a9f257_0
- fvcore=0.1.5.post20221221=pyhd8ed1ab_0
- giflib=5.2.1=h5eee18b_3
- gmp=6.2.1=h295c915_3
- gnutls=3.6.15=he1e5248_0
- idna=3.4=py39h06a4308_0
- intel-openmp=2023.1.0=hdb19cb5_46305
- iopath=0.1.9=pyhd8ed1ab_0
- jinja2=3.1.2=py39h06a4308_0
- jpeg=9e=h5eee18b_1
- lame=3.100=h7b6447c_0
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.38=h1181459_1
- lerc=3.0=h295c915_0
- libcublas=11.10.3.66=0
- libcufft=10.7.2.124=h4fbf590_0
- libcufile=1.7.2.10=0
- libcurand=10.3.3.141=0
- libcusolver=11.4.0.1=0
- libcusparse=11.7.4.91=0
- libdeflate=1.17=h5eee18b_0
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=11.2.0=h1234567_1
- libgomp=11.2.0=h1234567_1
- libidn2=2.3.4=h5eee18b_0
- libnpp=11.7.4.75=0
- libnvjpeg=11.8.0.2=0
- libopus=1.3.1=h7b6447c_0
- libpng=1.6.39=h5eee18b_0
- libstdcxx-ng=11.2.0=h1234567_1
- libtasn1=4.19.0=h5eee18b_0
- libtiff=4.5.1=h6a678d5_0
- libunistring=0.9.10=h27cfd23_0
- libvpx=1.7.0=h439df22_0
- libwebp=1.2.4=h11a3e52_1
- libwebp-base=1.2.4=h5eee18b_1
- lz4-c=1.9.4=h6a678d5_0
- markupsafe=2.1.1=py39h7f8727e_0
- mkl=2023.1.0=h213fc3f_46343
- mkl-service=2.4.0=py39h5eee18b_1
- mkl_fft=1.3.6=py39h417a72b_1
- mkl_random=1.2.2=py39h417a72b_1
- mpmath=1.3.0=py39h06a4308_0
- ncurses=6.4=h6a678d5_0
- nettle=3.7.3=hbbd107a_1
- networkx=3.1=py39h06a4308_0
- omegaconf=2.3.0=pyhd8ed1ab_0
- openh264=2.1.1=h4ff587b_0
- openssl=3.0.10=h7f8727e_2
- packaging=23.1=py39h06a4308_0
- pillow=9.4.0=py39h6a678d5_0
- pip=23.2.1=py39h06a4308_0
- portalocker=2.3.0=py39h06a4308_1
- pycparser=2.21=pyhd3eb1b0_0
- pyopenssl=23.2.0=py39h06a4308_0
- pysocks=1.7.1=py39h06a4308_0
- python=3.9.17=h955ad1f_0
- pytorch=2.0.0=py3.9_cuda11.7_cudnn8.5.0_0
- pytorch-cuda=11.7=h778d358_5
- pytorch-mutex=1.0=cuda
- pyyaml=6.0=py39h5eee18b_1
- readline=8.2=h5eee18b_0
- requests=2.31.0=py39h06a4308_0
- setuptools=68.0.0=py39h06a4308_0
- sqlite=3.41.2=h5eee18b_0
- sympy=1.12=pyh04b8f61_3
- tabulate=0.8.10=py39h06a4308_0
- tbb=2021.8.0=hdb19cb5_0
- termcolor=2.1.0=py39h06a4308_0
- tk=8.6.12=h1ccaba5_0
- torchmetrics=0.10.3=pyhd8ed1ab_0
- torchtriton=2.0.0=py39
- torchvision=0.15.0=py39_cu117
- tqdm=4.65.0=py39hb070fc8_0
- typing_extensions=4.7.1=py39h06a4308_0
- tzdata=2023c=h04d1e81_0
- urllib3=1.26.16=py39h06a4308_0
- wheel=0.38.4=py39h06a4308_0
- x264=1!157.20191217=h7b6447c_0
- xformers=0.0.18=py39_cu11.8.0_pyt2.0.0
- xz=5.4.2=h5eee18b_0
- yacs=0.1.6=pyhd3eb1b0_1
- yaml=0.2.5=h7b6447c_0
- zlib=1.2.13=h5eee18b_0
- zstd=1.5.5=hc292b87_0
- pip:
- addict==2.4.0
- asttokens==2.2.1
- backcall==0.2.0
- cachetools==5.3.1
- click==8.1.7
- cloudpickle==2.2.1
- comm==0.1.4
- contourpy==1.1.0
- cubinlinker-cu11==0.3.0.post1
- cuda-python==11.8.2
- cudf-cu11==23.8.0
- cuml-cu11==23.8.0
- cupy-cuda11x==12.2.0
- cycler==0.11.0
- cython==3.0.2
- dask==2023.7.1
- dask-cuda==23.8.0
- dask-cudf-cu11==23.8.0
- debugpy==1.6.7.post1
- decorator==5.1.1
- distributed==2023.7.1
- exceptiongroup==1.1.3
- executing==1.2.0
- fastrlock==0.8.2
- fonttools==4.42.1
- fsspec==2023.6.0
- importlib-metadata==6.8.0
- importlib-resources==6.0.1
- ipykernel==6.25.1
- ipython==8.15.0
- jedi==0.19.0
- joblib==1.3.2
- jupyter-client==8.3.1
- jupyter-core==5.3.1
- kiwisolver==1.4.5
- llvmlite==0.40.1
- locket==1.0.0
- matplotlib==3.7.2
- matplotlib-inline==0.1.6
- mmcls==0.25.0
- mmcv-full==1.5.0
- mmsegmentation==0.27.0
- msgpack==1.0.5
- nest-asyncio==1.5.7
- numba==0.57.1
- numpy==1.24.4
- nvtx==0.2.7
- opencv-python==4.8.0.76
- pandas==1.5.3
- parso==0.8.3
- partd==1.4.0
- pexpect==4.8.0
- pickleshare==0.7.5
- platformdirs==3.10.0
- prettytable==3.8.0
- prompt-toolkit==3.0.39
- protobuf==4.24.2
- psutil==5.9.5
- ptxcompiler-cu11==0.7.0.post1
- ptyprocess==0.7.0
- pure-eval==0.2.2
- pyarrow==11.0.0
- pygments==2.16.1
- pylibraft-cu11==23.8.0
- pynvml==11.4.1
- pyparsing==3.0.9
- python-dateutil==2.8.2
- pytz==2023.3
- pyzmq==25.1.1
- raft-dask-cu11==23.8.0
- rmm-cu11==23.8.0
- scipy==1.11.2
- six==1.16.0
- sortedcontainers==2.4.0
- stack-data==0.6.2
- tblib==2.0.0
- tomli==2.0.1
- toolz==0.12.0
- tornado==6.3.3
- traitlets==5.9.0
- treelite==3.2.0
- treelite-runtime==3.2.0
- ucx-py-cu11==0.33.0
- wcwidth==0.2.6
- yapf==0.40.1
- zict==3.0.0
- zipp==3.16.2
prefix: /home/shravan/anaconda3/envs/dinov2-extras
Thanks for the updates and great to know it's working for you now. Hopefully once #188 and #190 are resolved (should make some progress this week), it should be much easier than having the exact environment we are specifying (at least for inference).
Hello, I am playing around with this notebook too. I had to do some lenghty manual installation of some of the library in the conda-extras.yaml. That's fine. The issue I have is more on the segmentation job. It seems to be that it is running on cpu rather than gpu, which is available. Am I missing something or this is normal ? (on windows 10 / WSL)
EDIT added the location to load_checkpoint and I am now using the gpu load_checkpoint(model, head_checkpoint_url, map_location='cuda:0')
Previously tried and failed with:
load_checkpoint(model, head_checkpoint_url, map_location=0)
load_checkpoint(model, head_checkpoint_url, map_location='0')
load_checkpoint(model, head_checkpoint_url, map_location='gpu')
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
load_checkpoint(model, head_checkpoint_url, map_location=DEVICE)
我已经测试了 Segmentaion 笔记本,现在它可以工作了, 这是我的最终 conda 环境:
name: dinov2-extras channels: - xformers - pytorch - nvidia - conda-forge - defaults dependencies: - _libgcc_mutex=0.1=main - _openmp_mutex=5.1=1_gnu - antlr-python-runtime=4.9.3=pyhd8ed1ab_1 - blas=1.0=mkl - brotlipy=0.7.0=py39h27cfd23_1003 - bzip2=1.0.8=h7b6447c_0 - ca-certificates=2023.05.30=h06a4308_0 - certifi=2023.7.22=py39h06a4308_0 - cffi=1.15.1=py39h5eee18b_3 - charset-normalizer=2.0.4=pyhd3eb1b0_0 - cryptography=41.0.2=py39h22a60cf_0 - cuda-cudart=11.7.99=0 - cuda-cupti=11.7.101=0 - cuda-libraries=11.7.1=0 - cuda-nvrtc=11.7.99=0 - cuda-nvtx=11.7.91=0 - cuda-runtime=11.7.1=0 - dataclasses=0.8=pyh6d0b6a4_7 - ffmpeg=4.2.2=h20bf706_0 - filelock=3.9.0=py39h06a4308_0 - freetype=2.12.1=h4a9f257_0 - fvcore=0.1.5.post20221221=pyhd8ed1ab_0 - giflib=5.2.1=h5eee18b_3 - gmp=6.2.1=h295c915_3 - gnutls=3.6.15=he1e5248_0 - idna=3.4=py39h06a4308_0 - intel-openmp=2023.1.0=hdb19cb5_46305 - iopath=0.1.9=pyhd8ed1ab_0 - jinja2=3.1.2=py39h06a4308_0 - jpeg=9e=h5eee18b_1 - lame=3.100=h7b6447c_0 - lcms2=2.12=h3be6417_0 - ld_impl_linux-64=2.38=h1181459_1 - lerc=3.0=h295c915_0 - libcublas=11.10.3.66=0 - libcufft=10.7.2.124=h4fbf590_0 - libcufile=1.7.2.10=0 - libcurand=10.3.3.141=0 - libcusolver=11.4.0.1=0 - libcusparse=11.7.4.91=0 - libdeflate=1.17=h5eee18b_0 - libffi=3.4.4=h6a678d5_0 - libgcc-ng=11.2.0=h1234567_1 - libgomp=11.2.0=h1234567_1 - libidn2=2.3.4=h5eee18b_0 - libnpp=11.7.4.75=0 - libnvjpeg=11.8.0.2=0 - libopus=1.3.1=h7b6447c_0 - libpng=1.6.39=h5eee18b_0 - libstdcxx-ng=11.2.0=h1234567_1 - libtasn1=4.19.0=h5eee18b_0 - libtiff=4.5.1=h6a678d5_0 - libunistring=0.9.10=h27cfd23_0 - libvpx=1.7.0=h439df22_0 - libwebp=1.2.4=h11a3e52_1 - libwebp-base=1.2.4=h5eee18b_1 - lz4-c=1.9.4=h6a678d5_0 - markupsafe=2.1.1=py39h7f8727e_0 - mkl=2023.1.0=h213fc3f_46343 - mkl-service=2.4.0=py39h5eee18b_1 - mkl_fft=1.3.6=py39h417a72b_1 - mkl_random=1.2.2=py39h417a72b_1 - mpmath=1.3.0=py39h06a4308_0 - ncurses=6.4=h6a678d5_0 - nettle=3.7.3=hbbd107a_1 - networkx=3.1=py39h06a4308_0 - omegaconf=2.3.0=pyhd8ed1ab_0 - openh264=2.1.1=h4ff587b_0 - openssl=3.0.10=h7f8727e_2 - packaging=23.1=py39h06a4308_0 - pillow=9.4.0=py39h6a678d5_0 - pip=23.2.1=py39h06a4308_0 - portalocker=2.3.0=py39h06a4308_1 - pycparser=2.21=pyhd3eb1b0_0 - pyopenssl=23.2.0=py39h06a4308_0 - pysocks=1.7.1=py39h06a4308_0 - python=3.9.17=h955ad1f_0 - pytorch=2.0.0=py3.9_cuda11.7_cudnn8.5.0_0 - pytorch-cuda=11.7=h778d358_5 - pytorch-mutex=1.0=cuda - pyyaml=6.0=py39h5eee18b_1 - readline=8.2=h5eee18b_0 - requests=2.31.0=py39h06a4308_0 - setuptools=68.0.0=py39h06a4308_0 - sqlite=3.41.2=h5eee18b_0 - sympy=1.12=pyh04b8f61_3 - tabulate=0.8.10=py39h06a4308_0 - tbb=2021.8.0=hdb19cb5_0 - termcolor=2.1.0=py39h06a4308_0 - tk=8.6.12=h1ccaba5_0 - torchmetrics=0.10.3=pyhd8ed1ab_0 - torchtriton=2.0.0=py39 - torchvision=0.15.0=py39_cu117 - tqdm=4.65.0=py39hb070fc8_0 - typing_extensions=4.7.1=py39h06a4308_0 - tzdata=2023c=h04d1e81_0 - urllib3=1.26.16=py39h06a4308_0 - wheel=0.38.4=py39h06a4308_0 - x264=1!157.20191217=h7b6447c_0 - xformers=0.0.18=py39_cu11.8.0_pyt2.0.0 - xz=5.4.2=h5eee18b_0 - yacs=0.1.6=pyhd3eb1b0_1 - yaml=0.2.5=h7b6447c_0 - zlib=1.2.13=h5eee18b_0 - zstd=1.5.5=hc292b87_0 - pip: - addict==2.4.0 - asttokens==2.2.1 - backcall==0.2.0 - cachetools==5.3.1 - click==8.1.7 - cloudpickle==2.2.1 - comm==0.1.4 - contourpy==1.1.0 - cubinlinker-cu11==0.3.0.post1 - cuda-python==11.8.2 - cudf-cu11==23.8.0 - cuml-cu11==23.8.0 - cupy-cuda11x==12.2.0 - cycler==0.11.0 - cython==3.0.2 - dask==2023.7.1 - dask-cuda==23.8.0 - dask-cudf-cu11==23.8.0 - debugpy==1.6.7.post1 - decorator==5.1.1 - distributed==2023.7.1 - exceptiongroup==1.1.3 - executing==1.2.0 - fastrlock==0.8.2 - fonttools==4.42.1 - fsspec==2023.6.0 - importlib-metadata==6.8.0 - importlib-resources==6.0.1 - ipykernel==6.25.1 - ipython==8.15.0 - jedi==0.19.0 - joblib==1.3.2 - jupyter-client==8.3.1 - jupyter-core==5.3.1 - kiwisolver==1.4.5 - llvmlite==0.40.1 - locket==1.0.0 - matplotlib==3.7.2 - matplotlib-inline==0.1.6 - mmcls==0.25.0 - mmcv-full==1.5.0 - mmsegmentation==0.27.0 - msgpack==1.0.5 - nest-asyncio==1.5.7 - numba==0.57.1 - numpy==1.24.4 - nvtx==0.2.7 - opencv-python==4.8.0.76 - pandas==1.5.3 - parso==0.8.3 - partd==1.4.0 - pexpect==4.8.0 - pickleshare==0.7.5 - platformdirs==3.10.0 - prettytable==3.8.0 - prompt-toolkit==3.0.39 - protobuf==4.24.2 - psutil==5.9.5 - ptxcompiler-cu11==0.7.0.post1 - ptyprocess==0.7.0 - pure-eval==0.2.2 - pyarrow==11.0.0 - pygments==2.16.1 - pylibraft-cu11==23.8.0 - pynvml==11.4.1 - pyparsing==3.0.9 - python-dateutil==2.8.2 - pytz==2023.3 - pyzmq==25.1.1 - raft-dask-cu11==23.8.0 - rmm-cu11==23.8.0 - scipy==1.11.2 - six==1.16.0 - sortedcontainers==2.4.0 - stack-data==0.6.2 - tblib==2.0.0 - tomli==2.0.1 - toolz==0.12.0 - tornado==6.3.3 - traitlets==5.9.0 - treelite==3.2.0 - treelite-runtime==3.2.0 - ucx-py-cu11==0.33.0 - wcwidth==0.2.6 - yapf==0.40.1 - zict==3.0.0 - zipp==3.16.2 prefix: /home/shravan/anaconda3/envs/dinov2-extras
请问您是如何安装的mmcv-full==1.5.0与mmsegmentation==0.27.0,能否提供一些指导信息
If you cannot use the environment provided above for setup, try using pip
pip install mmcv-full==1.5.0
pip install mmsegmentation==0.27.0
pip install mmcv==1.7.1
works