keras-yolo2
keras-yolo2 copied to clipboard
0 Boxes detected always
Hi, I'have a problem with training network with my own dataset. I have even tried with white blobs on black background and still netowk is unable to detect anything.
{
"model" : {
"backend": "Full Yolo",
"input_size": 416,
"anchors": [0.29,0.11, 1.83,0.57, 3.79,1.31, 7.82,2.63, 13.70,5.09],
"max_box_per_image": 10,
"labels": ["Rock"]
},
"train": {
"train_image_folder": "----",
"train_annot_folder": "----",
"train_times": 3,
"pretrained_weights": "full_yolo_racoon.h5",
"batch_size": 16,
"learning_rate": 1e-4,
"nb_epochs": 50,
"warmup_epochs": 3,
"object_scale": 1.0 , (or 5.0 doesn't matter)
"no_object_scale": 1.0,
"coord_scale": 1.0,
"class_scale": 1.0,
"saved_weights_name": "full_yolo_rock_2.h5",
"debug": true
},
"valid": {
"valid_image_folder": "",
"valid_annot_folder": "",
"valid_times": 1
}
}
My image when training on real data:
My image in try with blobs
My annotation:
<annotation>
<folder>Rocks</folder>
<filename>0085.png</filename>
<path>-----/0085.png</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>540</width>
<height>960</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>Rock</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>433</xmin>
<ymin>17</ymin>
<xmax>486</xmax>
<ymax>53</ymax>
</bndbox>
</object>
<object>
<name>Rock</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>489</xmin>
<ymin>40</ymin>
<xmax>497</xmax>
<ymax>47</ymax>
</bndbox>
</object>
<object>
<name>Rock</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>358</xmin>
<ymin>75</ymin>
<xmax>623</xmax>
<ymax>300</ymax>
</bndbox>
</object>
<object>
<name>Rock</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>750</xmin>
<ymin>174</ymin>
<xmax>939</xmax>
<ymax>234</ymax>
</bndbox>
</object>
<object>
<name>Rock</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>587</xmin>
<ymin>227</ymin>
<xmax>655</xmax>
<ymax>289</ymax>
</bndbox>
</object>
</annotation>
Just found out that if I stop training when loss in relatively high it detects objects but a lot of boxes at one object
@kubasienki Have you found any solution?
Probably. My guess is that yolo architecture works on grid for which my objects are too small. But that's just my guess.