nvidia nvml destory the start in docker without nvidia gpu
I have no nvidia gpu and use docker to run exo
- docker run ubuntu
- git clone exo
- apt install build-essential python3 python3-venv python3-pip libgl1-mesa-dev libglib2.0-0
- source install.sh
- report the error
None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used. None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used. Selected inference engine: None
/ _ \ / / _ \ | /> < (_) | _/_/____/
Detected system: Linux Inference engine name after selection: tinygrad Using inference engine: TinygradDynamicShardInferenceEngine with shard downloader: HFShardDownloader [58906] Chat interface started:
- http://127.0.0.1:52415
- http://172.17.0.2:52415 ChatGPT API endpoint served at:
- http://127.0.0.1:52415/v1/chat/completions
- http://172.17.0.2:52415/v1/chat/completions Traceback (most recent call last): File "/exo/.venv/lib/python3.12/site-packages/pynvml.py", line 2248, in _LoadNvmlLibrary nvmlLib = CDLL("libnvidia-ml.so.1") ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/ctypes/init.py", line 379, in init self._handle = _dlopen(self._name, mode) ^^^^^^^^^^^^^^^^^^^^^^^^^ OSError: libnvidia-ml.so.1: cannot open shared object file: No such file or directory
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/exo/.venv/bin/exo", line 5, in
I test that tinygrad.Device.DEFAULT return value "GPU". When I delete "Device.DEFAULT == "GPU"" in nvidia case exo worked.I don't know if it can work properly with oneAPI(Intel GPU)
I test that tinygrad.Device.DEFAULT return value "GPU". When I delete Device.DEFAULT == "NV" in nvidia case exo worked.I don't know if it can work properly with oneAPI(Intel GPU)
You'll need to install the prerequisites listed in the README:
For Linux with NVIDIA GPU support (Linux-only, skip if not using Linux or NVIDIA):
- NVIDIA driver - verify with nvidia-smi
- CUDA toolkit - install from NVIDIA CUDA guide, verify with nvcc --version
- cuDNN library - download from NVIDIA cuDNN page, verify installation by following these steps
我测试了 tinygrad.Device.DEFAULT 返回值“GPU”。当我在 nvidia 情况下删除 Device.DEFAULT ==“NV”时,exo 起作用了。我不知道它是否可以与 oneAPI(Intel GPU)正常工作
您需要安装 README 中列出的先决条件:
对于支持 NVIDIA GPU 的 Linux(仅限 Linux,如果不使用 Linux 或 NVIDIA,请跳过):
- NVIDIA 驱动程序 - 使用 nvidia-smi 进行验证
- CUDA 工具包 - 从NVIDIA CUDA 指南安装,使用 nvcc --version 进行验证
- cuDNN 库 - 从NVIDIA cuDNN 页面下载,按照以下步骤验证安装
I not use NVIDIA GPU,but I use INTEL GPU but the case enter the incorrect NVIDIA case so it was a bug and need patch
我测试了 tinygrad.Device.DEFAULT 返回值“GPU”。当我在 nvidia 情况下删除 Device.DEFAULT ==“NV”时,exo 起作用了。我不知道它是否可以与 oneAPI(Intel GPU)正常工作
It's my mistake I have delete "Device.DEFAULT=="GPU"" not "Device.DEFAULT=="NV""
Ni Hao @2jiangjiang, if you want to go ahead and craft a line with the device name specs for your card, I can add it to the CHIP_FLOPS list for my Intel Arc Support PR...
Should look something like this: https://github.com/exo-explore/exo/pull/791/files#diff-cf2f88e490e7f1b3c6256e98545897497902d040113f29dafc5fc6054b6b2151R144