gaussian
gaussian copied to clipboard
A JavaScript model of the normal distribution
gaussian
A JavaScript model of the Normal (or Gaussian) distribution.
API
Creating a Distribution
var gaussian = require('gaussian');
var distribution = gaussian(mean, variance);
// Take a random sample using inverse transform sampling method.
var sample = distribution.ppf(Math.random());
Properties
-
mean
: the mean (μ) of the distribution -
variance
: the variance (σ^2) of the distribution -
standardDeviation
: the standard deviation (σ) of the distribution
Probability Functions
-
pdf(x)
: the probability density function, which describes the probability of a random variable taking on the value x -
cdf(x)
: the cumulative distribution function, which describes the probability of a random variable falling in the interval (−∞, x] -
ppf(x)
: the percent point function, the inverse of cdf
Combination Functions
-
mul(d)
: returns the product distribution of this and the given distribution; equivalent toscale(d)
when d is a constant -
div(d)
: returns the quotient distribution of this and the given distribution; equivalent toscale(1/d)
when d is a constant -
add(d)
: returns the result of adding this and the given distribution's means and variances -
sub(d)
: returns the result of subtracting this and the given distribution's means and variances -
scale(c)
: returns the result of scaling this distribution by the given constant
Generation Function
-
random(n)
: returns an array of generatedn
random samples correspoding to the Gaussian parameters.