MobileNet-YOLO icon indicating copy to clipboard operation
MobileNet-YOLO copied to clipboard

训练mAP很高(接近0.99),但是实际测试图片发现效果很差

Open pangkun248 opened this issue 5 years ago • 8 comments

我发现我的一个检测任务mAP和图片测试结果不吻合,经过排查不是过拟合的问题,因为我发现即使用那些验证集上的图片来进行测试,有些目标也没有被检测出来。同样的情况我更换另一个检测任务发现和mAP和测试结果符合。请问你知道是哪里出了问题吗 Q %{04Z76ZS6@UIIJ540O@W %@L_23PBP_R%W$ZJDLZ7V2I 897OXMD9ZWB DR2DWDD}A42 截图中红色椭圆型的是未检测出来的目标,按理说不应该出现这种情况才对呀

pangkun248 avatar Nov 25 '19 05:11 pangkun248

你好,请问这个模型怎么检测map和ap这些呢

daixia avatar Dec 11 '19 09:12 daixia

检查一下你的 Yolov3DetectionOutput layer 有没有设置confidence_threshold这个参数,不设置的话,默认是0.01

如果你test里面没有设置(默认0.01),而预测的时候用的0.3或者0.5,那么差距就会很大,可以将这两个值设置成一致的试试

AnmachenGuo avatar Dec 23 '19 07:12 AnmachenGuo

你好,请问这个模型怎么检测map和ap这些呢

detection_eval就是最终的mAP,上面的class对应的就是每个类AP

pangkun248 avatar Dec 25 '19 06:12 pangkun248

检查一下你的 Yolov3DetectionOutput layer 有没有设置confidence_threshold这个参数,不设置的话,默认是0.01

如果你test里面没有设置(默认0.01),而预测的时候用的0.3或者0.5,那么差距就会很大,可以将这两个值设置成一致的试试

和conf_thres没关系,我已经放弃这个方案了

pangkun248 avatar Dec 25 '19 06:12 pangkun248

@pangkun248 How to check the precision and recall for every class?

MuhammadAsadJaved avatar Jan 03 '20 07:01 MuhammadAsadJaved

@pangkun248 How to check the precision and recall for every class?

In this code, only the results of mAP and AP are given, but I think you can look at the source code. I think that since AP has been calculated, then recall and precision should be calculated. But I'm not familiar with C ++ and can only help you here.

pangkun248 avatar Jan 03 '20 07:01 pangkun248

Ok Thank you so much.

On Fri, Jan 3, 2020 at 3:17 PM pangkun248 [email protected] wrote:

@pangkun248 https://github.com/pangkun248 How to check the precision and recall for every class?

In this code, only the results of mAP and AP are given, but I think you can look at the source code. I think that since AP has been calculated, then recall and precision should be calculated. But I'm not familiar with C ++ and can only help you here.

— You are receiving this because you commented. Reply to this email directly, view it on GitHub https://github.com/eric612/MobileNet-YOLO/issues/214?email_source=notifications&email_token=AG4GR5FDMW53YCME2PXENPDQ33RCBA5CNFSM4JRDSMCKYY3PNVWWK3TUL52HS4DFVREXG43VMVBW63LNMVXHJKTDN5WW2ZLOORPWSZGOEIAPBGI#issuecomment-570486937, or unsubscribe https://github.com/notifications/unsubscribe-auth/AG4GR5CBZKJJ4NQWKGBQX2TQ33RCBANCNFSM4JRDSMCA .

MuhammadAsadJaved avatar Jan 03 '20 08:01 MuhammadAsadJaved

test和train不一样的问题,应该主要是有域BN层引起的,你在test时将BN层的global参数设置成false结果应该可以,主要是过拟合或者训练样本不充分。

WangYX-TKZ avatar May 25 '20 07:05 WangYX-TKZ