tf-faster-rcnn
tf-faster-rcnn copied to clipboard
ValueError: No variables to save
Hello,
I would like to create a dataset (the same way Pascal VOC) and train a res101 on it.
I wrote a cpp code to create my dataset and call the train_faster_rcnn.sh
But I meet this error : "ValueError: No variables to save"
Here is my log file :
- echo Logging output to tf-faster-rcnn/experiments/logs/res101_voc_2007_trainval__res101.txt.2018-01-12_16-01-23 Logging output to tf-faster-rcnn/experiments/logs/res101_voc_2007_trainval__res101.txt.2018-01-12_16-01-23
- set +x
- '[' '!' -f tf-faster-rcnn/output/res101/voc_2007_trainval/default/res101_faster_rcnn_iter_70000.ckpt.index ']'
- [[ ! -z '' ]]
- CUDA_VISIBLE_DEVICES=0
- time python2 ./tf-faster-rcnn/tools/trainval_net.py --weight /home/antoine/Documents/RCNNProject/DataFolder/imagenet_weights/res101.ckpt
Called with args:
Namespace(cfg_file=None, imdb_name='voc_2007_trainval', imdbval_name='voc_2007_test', max_iters=70000, net='res50', set_cfgs=None, tag=None, weight='/home/antoine/Documents/RCNNProject/DataFolder/imagenet_weights/res101.ckpt')
Using config:
{'ANCHOR_RATIOS': [0.5, 1, 2],
'ANCHOR_SCALES': [8, 16, 32],
'DATA_DIR': '/home/antoine/Documents/RCNNProject/DataFolder/',
'EXP_DIR': 'default',
'MATLAB': 'matlab',
'MOBILENET': {'DEPTH_MULTIPLIER': 1.0,
'FIXED_LAYERS': 5,
'REGU_DEPTH': False,
'WEIGHT_DECAY': 4e-05},
'PIXEL_MEANS': array([[[ 102.9801, 115.9465, 122.7717]]]),
'POOLING_MODE': 'crop',
'POOLING_SIZE': 7,
'RESNET': {'FIXED_BLOCKS': 1, 'MAX_POOL': False},
'RNG_SEED': 3,
'ROOT_DIR': '/home/antoine/Documents/RCNNProject/project-build/tf-faster-rcnn',
'RPN_CHANNELS': 512,
'TEST': {'BBOX_REG': True,
'HAS_RPN': False,
'MAX_SIZE': 1000,
'MODE': 'nms',
'NMS': 0.3,
'PROPOSAL_METHOD': 'gt',
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'RPN_TOP_N': 5000,
'SCALES': [600],
'SVM': False},
'TRAIN': {'ASPECT_GROUPING': False,
'BATCH_SIZE': 128,
'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
'BBOX_NORMALIZE_TARGETS': True,
'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': True,
'BBOX_REG': True,
'BBOX_THRESH': 0.5,
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.1,
'BIAS_DECAY': False,
'DISPLAY': 10,
'DOUBLE_BIAS': True,
'FG_FRACTION': 0.25,
'FG_THRESH': 0.5,
'GAMMA': 0.1,
'HAS_RPN': True,
'IMS_PER_BATCH': 1,
'LEARNING_RATE': 0.001,
'MAX_SIZE': 1000,
'MOMENTUM': 0.9,
'PROPOSAL_METHOD': 'gt',
'RPN_BATCHSIZE': 256,
'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 2000,
'RPN_PRE_NMS_TOP_N': 12000,
'SCALES': [600],
'SNAPSHOT_ITERS': 5000,
'SNAPSHOT_KEPT': 3,
'SNAPSHOT_PREFIX': 'res101_faster_rcnn',
'STEPSIZE': [30000],
'SUMMARY_INTERVAL': 180,
'TRUNCATED': False,
'USE_ALL_GT': True,
'USE_FLIPPED': True,
'USE_GT': False,
'WEIGHT_DECAY': 0.0001},
'USE_GPU_NMS': True}
Loaded dataset
voc_2007_trainvalfor training Set proposal method: gt Appending horizontally-flipped training examples... wrote gt roidb to /home/antoine/Documents/RCNNProject/DataFolder/cache/voc_2007_trainval_gt_roidb.pkl done Preparing training data... done 2348 roidb entries Output will be saved to/home/antoine/Documents/RCNNProject/project-build/tf-faster-rcnn/output/default/voc_2007_trainval/defaultTensorFlow summaries will be saved to/home/antoine/Documents/RCNNProject/project-build/tf-faster-rcnn/tensorboard/default/voc_2007_trainval/defaultLoaded datasetvoc_2007_testfor training Set proposal method: gt Preparing training data... wrote gt roidb to /home/antoine/Documents/RCNNProject/DataFolder/cache/voc_2007_test_gt_roidb.pkl done 293 validation roidb entries Filtered 0 roidb entries: 2348 -> 2348 Filtered 0 roidb entries: 293 -> 293 2018-01-12 16:01:26.192323: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA Solving... /home/antoine/.local/lib/python2.7/site-packages/tensorflow/python/ops/gradients_impl.py:96: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory. "Converting sparse IndexedSlices to a dense Tensor of unknown shape. " Loading initial model weights from /home/antoine/Documents/RCNNProject/DataFolder/imagenet_weights/res101.ckpt Traceback (most recent call last): File "./tf-faster-rcnn/tools/trainval_net.py", line 139, inmax_iters=args.max_iters) File "/home/antoine/Documents/RCNNProject/project-build/tf-faster-rcnn/tools/../lib/model/train_val.py", line 391, in train_net sw.train_model(sess, max_iters) File "/home/antoine/Documents/RCNNProject/project-build/tf-faster-rcnn/tools/../lib/model/train_val.py", line 268, in train_model sess) File "/home/antoine/Documents/RCNNProject/project-build/tf-faster-rcnn/tools/../lib/model/train_val.py", line 201, in initialize restorer = tf.train.Saver(variables_to_restore) File "/home/antoine/.local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 1218, in init self.build() File "/home/antoine/.local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 1227, in build self._build(self._filename, build_save=True, build_restore=True) File "/home/antoine/.local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 1251, in _build raise ValueError("No variables to save") ValueError: No variables to save Command exited with non-zero status 1 8.54user 1.10system 0:07.82elapsed 123%CPU (0avgtext+0avgdata 724440maxresident)k 0inputs+8320outputs (0major+174129minor)pagefaults 0swaps
Can someone tell me what can be going on ? :)
Thank you
Did you solve it?I have the same issue
Did you solve it?I have the same issue Hi, I have the same issue. Did you solve it?
!python /content/drive/MyDrive/tf-faster-rcnn/tools/trainval_net.py --net vgg16 --weight /content/drive/MyDrive/tf-faster-rcnn/data/imagenet_weights/vgg16.ckpt --imdb voc_2007_trainval --imdbval voc_2007_test
please make sure the --net and --weight is vgg16 & vgg.ckpt are like this. thank you