SCpubr
SCpubr copied to clipboard
Seurat v5 Support
Hi,
Love your package and hope to continue using it!
I believe SCpubr
has support for Seuratv5
but I was having some trouble with the do_DimPlot
function. Am I missing something?
> object <- readRDS('objects/merged.rds')
> p <- object %>% do_DimPlot(reduction='X_umap', group.by='leiden')
Loading required package: BPCells
Error in `asMethod()`:
! Error converting IterableMatrix to dgCMatrix
• dgCMatrix objects cannot hold more than 2^31 non-zero entries
• Input matrix has 3239391600 entries
Run `rlang::last_trace()` to see where the error occurred.
> sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Rocky Linux 8.7 (Green Obsidian)
Matrix products: default
BLAS/LAPACK: /usr/local/intel/2022.1.2.146/mkl/2022.0.2/lib/intel64/libmkl_rt.so.2; LAPACK version 3.9.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: America/New_York
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] BPCells_0.2.0 dplyr_1.1.4 ggplot2_3.5.1 SCpubr_2.0.2
[5] Seurat_5.1.0 SeuratObject_5.0.2 sp_2.1-4
loaded via a namespace (and not attached):
[1] RColorBrewer_1.1-3 jsonlite_1.8.8 magrittr_2.0.3
[4] spatstat.utils_3.0-5 zlibbioc_1.50.0 fs_1.6.4
[7] vctrs_0.6.5 ROCR_1.0-11 memoise_2.0.1
[10] spatstat.explore_3.2-7 htmltools_0.5.8.1 forcats_1.0.0
[13] gridGraphics_0.5-1 sctransform_0.4.1 parallelly_1.37.1
[16] KernSmooth_2.23-24 htmlwidgets_1.6.4 ica_1.0-3
[19] plyr_1.8.9 plotly_4.10.4 zoo_1.8-12
[22] cachem_1.1.0 igraph_2.0.3 mime_0.12
[25] lifecycle_1.0.4 pkgconfig_2.0.3 Matrix_1.7-0
[28] R6_2.5.1 fastmap_1.2.0 GenomeInfoDbData_1.2.12
[31] MatrixGenerics_1.16.0 fitdistrplus_1.1-11 future_1.33.2
[34] shiny_1.8.1.1 digest_0.6.36 colorspace_2.1-0
[37] S4Vectors_0.42.0 patchwork_1.2.0 tensor_1.5
[40] RSpectra_0.16-1 irlba_2.3.5.1 GenomicRanges_1.56.1
[43] labeling_0.4.3 progressr_0.14.0 fansi_1.0.6
[46] spatstat.sparse_3.1-0 httr_1.4.7 polyclip_1.10-6
[49] abind_1.4-5 compiler_4.4.1 withr_3.0.0
[52] viridis_0.6.5 fastDummies_1.7.3 MASS_7.3-61
[55] tools_4.4.1 lmtest_0.9-40 httpuv_1.6.15
[58] future.apply_1.11.2 goftest_1.2-3 glue_1.7.0
[61] nlme_3.1-165 promises_1.3.0 grid_4.4.1
[64] Rtsne_0.17 cluster_2.1.6 reshape2_1.4.4
[67] generics_0.1.3 gtable_0.3.5 spatstat.data_3.1-2
[70] tidyr_1.3.1 data.table_1.15.4 XVector_0.44.0
[73] utf8_1.2.4 BiocGenerics_0.50.0 spatstat.geom_3.2-9
[76] RcppAnnoy_0.0.22 ggrepel_0.9.5 RANN_2.6.1
[79] pillar_1.9.0 stringr_1.5.1 yulab.utils_0.1.4
[82] spam_2.10-0 RcppHNSW_0.6.0 later_1.3.2
[85] splines_4.4.1 lattice_0.22-6 survival_3.7-0
[88] deldir_2.0-4 tidyselect_1.2.1 miniUI_0.1.1.1
[91] pbapply_1.7-2 gridExtra_2.3 IRanges_2.38.0
[94] scattermore_1.2 stats4_4.4.1 matrixStats_1.3.0
[97] UCSC.utils_1.0.0 stringi_1.8.4 lazyeval_0.2.2
[100] codetools_0.2-20 tibble_3.2.1 ggplotify_0.1.2
[103] cli_3.6.3 uwot_0.2.2 xtable_1.8-4
[106] reticulate_1.38.0 munsell_0.5.1 GenomeInfoDb_1.40.1
[109] Rcpp_1.0.12 globals_0.16.3 spatstat.random_3.2-3
[112] png_0.1-8 parallel_4.4.1 assertthat_0.2.1
[115] dotCall64_1.1-1 listenv_0.9.1 viridisLite_0.4.2
[118] scales_1.3.0 ggridges_0.5.6 leiden_0.4.3.1
[121] purrr_1.0.2 rlang_1.1.4 cowplot_1.1.3