baybe
baybe copied to clipboard
Feature: Add LLMRecommender
Example usage:
from baybe.recommenders.pure.llm.llm import LLMRecommender, ParameterDescription
experiment_description = "This experiment is about a aryl halide reaction."
objective_description = "Maximize the `yield` of the reaction. Minimum is 0, maximum is 100."
parameter_descriptions = [
ParameterDescription(name="base", description="The base used in the reaction.", type="categorical", bounds=base_values),
ParameterDescription(name="ligand", description="The ligand used in the reaction.", type="categorical", bounds=ligand_values),
ParameterDescription(name="additive", description="The additive used in the reaction.", type="categorical", bounds=additive_values),
ParameterDescription(name="aryl_halide", description="The aryl halide used in the reaction.", type="categorical", bounds=aryl_halide_values),
]
recommender = LLMRecommender(
model="azure/gpt-4o-mini",
experiment_description=experiment_description,
objective_description=objective_description,
parameter_descriptions=parameter_descriptions,
litellm_args={"temperature": 0.5},
recovery_model="azure/gpt-4o-mini",
recovery_litellm_args={"temperature": 0.2},
)
@tobiasploetz - with #580 now being merged, what is the state here?
@tobiasploetz - with #580 now being merged, what is the state here?
I need to modify this PR to use the new metadata fields. It's in the backlog :)