sds_challenges
sds_challenges copied to clipboard
SDS Club's Monthly Challenges 📊
SDS Club's Monthly Challenges 📊
Learn through continuous learning experiences with an on-going experience. Challenges will bring your Data Science skills to the next level.
NOTE: answers to previous challenges will be added to the answers folder after the end of each challenge
SDS Challenge #10 - Consumer Reviews
├── challenge.ipynb (challenge)
├── data
├── pred_reviews.csv (dataset to predict on)
└── public_reviews.csv (dataset to train and test)
SDS Challenge #9 - Email Fraud
├── challenge.ipynb (challenge)
├── data
├── pred_emails.csv (dataset to predict on)
└── public_emails.csv (dataset to train and test)
SDS Challenge #8 - Song Popularity
├── challenge.ipynb (challenge)
├── data
├── pred_songs.csv (dataset to predict on)
└── public_songs.csv (dataset to train and test)
SDS Challenge #7 - Laptop Prices
├── challenge.ipynb (challenge)
├── data
├── pred_laptops.csv (dataset to predict on)
└── public_laptops.csv (dataset to train and test)
SDS Challenge #6 - Medical Appointment No Shows
├── challenge.ipynb (challenge)
├── data
├── pred_appointments.csv (dataset to predict on)
└── public_appointments.csv (dataset to train and test)
SDS Challenge #5 - Stack Overflow Questions
├── challenge.ipynb (challenge)
├── data
├── pred_questions.csv (dataset to predict on)
└── public_questions.csv (dataset to train and test)
SDS Challenge #4 - Hostel Listings
├── challenge.ipynb (challenge)
├── data
├── pred_listings.csv (dataset to predict on)
└── public_listings.csv (dataset to train and test)
Challenge #3 - Job Postings
├── challenge.ipynb (challenge problem)
├── data
├── pred_jobs.csv (dataset to predict on)
└── public_jobs.csv (dataset to train and test)
Challenge #2 - Used Cars Prices
├── challenge.ipynb (challenge problem)
├── data
├── pred_cars.csv (dataset to predict on)
└── public_cars.csv (dataset to train and test)
Challenge #1 - Flight Cancellations
├── challenge.ipynb (challenge problem)
├── data
├── pred_flights.csv (dataset to predict on)
└── public_flights.csv (dataset to train and test)