ali-pytorch
ali-pytorch copied to clipboard
Adversarially Learned Inference in Pytorch
Adversarially Learned Inference
Implementation of paper Aversarially Learned Inference in Pytorch
main.py
includes training code for datasets
- [X] SVHN
- [ ] CIFAR10
- [ ] CelebA
models.py
includes the network architectures for the different datasets as defined in the orginal paper
Usage
usage: main.py [-h] --dataset DATASET --dataroot DATAROOT [--workers WORKERS]
[--batch-size BATCH_SIZE] [--image-size IMAGE_SIZE] [--nc NC]
[--nz NZ] [--epochs EPOCHS] [--lr LR] [--beta1 BETA1]
[--beta2 BETA2] [--cuda] [--ngpu NGPU] [--gpu-id GPU_ID]
[--netGx NETGX] [--netGz NETGZ] [--netDz NETDZ] [--netDx NETDX]
[--netDxz NETDXZ] [--clamp_lower CLAMP_LOWER]
[--clamp_upper CLAMP_UPPER] [--experiment EXPERIMENT]
optional arguments:
-h, --help show this help message and exit
--dataset DATASET cifar10 | svhn | celeba
--dataroot DATAROOT path to dataset
--workers WORKERS number of data loading workers
--batch-size BATCH_SIZE
input batch size
--image-size IMAGE_SIZE
the height / width of the input image to network
--nc NC input image channels
--nz NZ size of the latent z vector
--epochs EPOCHS number of epochs to train for
--lr LR learning rate for optimizer, default=0.00005
--beta1 BETA1 beta1 for adam. default=0.5
--beta2 BETA2 beta2 for adam. default=0.999
--cuda enables cuda
--ngpu NGPU number of GPUs to use
--gpu-id GPU_ID id(s) for CUDA_VISIBLE_DEVICES
--netGx NETGX path to netGx (to continue training)
--netGz NETGZ path to netGz (to continue training)
--netDz NETDZ path to netDz (to continue training)
--netDx NETDX path to netDx (to continue training)
--netDxz NETDXZ path to netDxz (to continue training)
--clamp_lower CLAMP_LOWER
--clamp_upper CLAMP_UPPER
--experiment EXPERIMENT
Where to store samples and models
Example
command line example for training SVHN
python main.py --dataset svhn --dataroot . --experiment svhn_ali --cuda --ngpu 1 --gpu-id 1 --batch-size 100 --epochs 100 --image-size 32 --nz 256 --lr 1e-4 --beta1 0.5 --beta2 10e-3
Cite
@article{DBLP:journals/corr/DumoulinBPLAMC16,
author = {Vincent Dumoulin and
Ishmael Belghazi and
Ben Poole and
Alex Lamb and
Mart{\'{\i}}n Arjovsky and
Olivier Mastropietro and
Aaron C. Courville},
title = {Adversarially Learned Inference},
journal = {CoRR},
volume = {abs/1606.00704},
year = {2016},
url = {http://arxiv.org/abs/1606.00704},
}