luftdatenpumpe
luftdatenpumpe copied to clipboard
Acquire and process live and historical air quality data without efforts. Filter by station-id, sensor-id and sensor-type, apply reverse geocoding, store into time-series and RDBMS databases, publish...
.. luftdatenpumpe-readme:
############## Luftdatenpumpe ##############
.. container:: align-center
.. figure:: https://cdn.jsdelivr.net/gh/earthobservations/luftdatenpumpe@main/doc/logo.svg
:target: https://github.com/earthobservations/luftdatenpumpe
:alt: Luftdatenpumpe logo
:height: 200px
:width: 200px
|
*Acquire and process live and historical air quality data without efforts.*
.. image:: https://assets.okfn.org/images/ok_buttons/oc_80x15_blue.png
:target: https://okfn.org/opendata/
.. image:: https://assets.okfn.org/images/ok_buttons/od_80x15_red_green.png
:target: https://okfn.org/opendata/
.. image:: https://assets.okfn.org/images/ok_buttons/ok_80x15_red_green.png
:target: https://okfn.org/opendata/
.. image:: https://assets.okfn.org/images/ok_buttons/os_80x15_orange_grey.png
:target: https://okfn.org/opendata/
|
-
Status
.. image:: https://github.com/earthobservations/luftdatenpumpe/workflows/Tests/badge.svg :target: https://github.com/earthobservations/luftdatenpumpe/actions?workflow=Tests :alt: CI outcome
.. image:: https://readthedocs.org/projects/luftdatenpumpe/badge/ :target: https://luftdatenpumpe.readthedocs.io/ :alt: Documentation build status
.. image:: https://codecov.io/gh/earthobservations/luftdatenpumpe/branch/main/graph/badge.svg :target: https://codecov.io/gh/earthobservations/luftdatenpumpe :alt: Test suite code coverage
.. image:: https://img.shields.io/pypi/v/luftdatenpumpe.svg :target: https://pypi.org/project/luftdatenpumpe/ :alt: Package version on PyPI
.. image:: https://img.shields.io/pypi/l/luftdatenpumpe.svg :target: https://github.com/earthobservations/luftdatenpumpe/blob/main/LICENSE :alt: Project license
.. image:: https://img.shields.io/pypi/status/luftdatenpumpe.svg :target: https://pypi.org/project/luftdatenpumpe/ :alt: Project status (alpha, beta, stable)
-
Usage
.. image:: https://pepy.tech/badge/luftdatenpumpe/month :target: https://pepy.tech/project/luftdatenpumpe/ :alt: PyPI downloads per month
-
Compatibility
.. image:: https://img.shields.io/badge/Grafana-5.x%20--%208.x-blue.svg :target: https://github.com/grafana/grafana :alt: Supported Grafana versions
.. image:: https://img.shields.io/badge/InfluxDB-1.x-blue.svg :target: https://github.com/influxdata/influxdb :alt: Supported InfluxDB versions
.. image:: https://img.shields.io/badge/Mosquitto-1.x%2C%202.x-blue.svg :target: https://github.com/eclipse/mosquitto :alt: Supported Mosquitto versions
.. image:: https://img.shields.io/badge/PostgreSQL-13%2C%2014%2C%2015-blue.svg :target: https://www.postgresql.org/ :alt: Supported PostgreSQL versions
.. image:: https://img.shields.io/badge/PostGIS-3.x-blue.svg :target: https://postgis.net/ :alt: Supported PostGIS versions
.. image:: https://img.shields.io/pypi/pyversions/luftdatenpumpe.svg :target: https://pypi.org/project/luftdatenpumpe/ :alt: Supported Python versions
|
About
Acquire and process live and historical air quality data without efforts.
Filter by station-id, sensor-id and sensor-type, apply reverse geocoding,
store into time-series_ and RDBMS_ databases (InfluxDB_ and PostGIS_),
publish to MQTT_, output as JSON, or visualize in Grafana
_.
Data sources: Sensor.Community
_ (luftdaten.info
), IRCELINE
, and
OpenAQ
_.
Features
-
Luftdatenpumpe_ acquires the measurement readings either from the livedata API of
luftdaten.info
_ or from its archived CSV files published toarchive.luftdaten.info
. To minimize impact on the upstream servers, all data gets reasonably cached. -
While iterating the readings, it optionally filters on station-id, sensor-id or sensor-type and restrains information processing to the corresponding stations and sensors.
-
Then, each station's location information gets enhanced by
- attaching its geospatial position as a Geohash_.
- attaching a synthetic real-world address resolved using the reverse geocoding service Nominatim_ by OpenStreetMap_.
-
Information about stations can be
- displayed on STDOUT or STDERR in JSON format.
- filtered and transformed interactively through jq_, the swiss army knife of JSON manipulation.
- stored into RDBMS_ databases like PostgreSQL_ using the fine dataset_ package. Being built on top of SQLAlchemy_, this supports all major databases.
- queried using advanced geospatial features when running PostGIS_, please
follow up reading the
Luftdatenpumpe PostGIS tutorial
_.
-
Measurement readings can be
- displayed on STDOUT or STDERR in JSON format, which allows for piping into jq_ again.
- forwarded to MQTT_.
- stored to InfluxDB_ and then
- displayed in Grafana_.
Synopsis
::
# List networks
luftdatenpumpe networks
# List LDI stations
luftdatenpumpe stations --network=ldi --station=49,1033 --reverse-geocode
# Store list of LDI stations and metadata into RDBMS database (PostgreSQL), also display on STDERR
luftdatenpumpe stations --network=ldi --station=49,1033 --reverse-geocode --target=postgresql://luftdatenpumpe@localhost/weatherbase
# Store LDI readings into InfluxDB
luftdatenpumpe readings --network=ldi --station=49,1033 --target=influxdb://luftdatenpumpe@localhost/luftdaten_info
# Forward LDI readings to MQTT
luftdatenpumpe readings --network=ldi --station=49,1033 --target=mqtt://mqtt.example.org/luftdaten.info
For a full overview about all program options including meaningful examples,
you might just want to run luftdatenpumpe --help
on your command line,
or visit the Luftdatenpumpe usage
_ documentation section.
Screenshots
Luftdaten-Viewer displays stations and measurements from luftdaten.info (LDI) in Grafana.
Map display and filtering
- Filter by different synthesized address components and sensor type.
- Display measurements from filtered stations on
Panodata Map Panel
_. - Display filtered list of stations with corresponding information in tabular form.
- Measurement values are held against configured thresholds so points are colored appropriately.
.. image:: https://community.hiveeyes.org/uploads/default/original/2X/f/f455d3afcd20bfa316fefbe69e43ca2fe159e62d.png :target: https://weather.hiveeyes.org/grafana/d/9d9rnePmk/amo-ldi-stations-5-map-by-sensor-type
Map popup labels
- Humanized label computed from synthesized OpenStreetMap address.
- Numeric station identifier.
- Measurement value, unit and field name.
.. image:: https://community.hiveeyes.org/uploads/default/original/2X/4/48eeda1a1d418eaf698b241a65080666abcf2497.png :target: https://weather.hiveeyes.org/grafana/d/9d9rnePmk/amo-ldi-stations-5-map-by-sensor-type
Installation
If you are running Python 3 already, you can installing the program using
pip
. We recommend to use a Python virtualenv
_.
::
pip install luftdatenpumpe --upgrade
At this point, you should be able to conduct simple tests like
luftdatenpumpe stations
as seen in the synopsis section above.
At least, you should verify the installation succeeded by running::
luftdatenpumpe --version
At install Luftdatenpumpe
_, you will find more detailed installation instructions
about how to install and configure auxiliary services, and eventually resolve some
prerequisites.
Luftdaten-Viewer
About
Using Luftdatenpumpe, you can build user-friendly interactive GIS systems
on top of PostGIS, InfluxDB and Grafana. This setup is called "Luftdaten-Viewer",
and some example scenarios can be inspected at Luftdatenpumpe gallery
_.
Instructions
These installation instructions outline how to setup the whole system to build similar interactive data visualization compositions of map-, graph- and other panel-widgets like outlined in the "Testimonials" section.
-
Luftdaten-Viewer Applications
_ -
Luftdaten-Viewer Databases
_ -
Luftdaten-Viewer Grafana
_
Other projects
Sensor.Community public data aggregator
Visualize recent sensor data on a world map for Sensor.Community and for different other official networks, like EEA, Luchtmeetnet, Atmo AURA/Sud/Occitanie, and Umweltbundesamt.
- https://github.com/pjgueno/SCPublicData
- https://forum.sensor.community/t/scraping-pm-data-help-needed/1448
Project information
Contributions
Any kind of contribution, feedback, or patch, is much welcome. Create an issue
_ or submit a patch if you think we should include a new feature, or to
report or fix a bug.
Resources
-
Source code
_ -
Documentation
_ -
Community Forum
_ -
Python Package Index (PyPI)
_
License
The project is licensed under the terms of the GNU AGPL license, see LICENSE
_.
Content attributions
The copyright of particular images and pictograms are held by their respective owners, unless otherwise noted.
-
Water Pump Free Icon <https://www.onlinewebfonts.com/icon/97990>
_ fromIcon Fonts <https://www.onlinewebfonts.com/icon/>
_ is licensed by CC BY 3.0.
.. _Community Forum: https://community.panodata.org/t/luftdatenpumpe/21 .. _Create an issue: https://github.com/earthobservations/luftdatenpumpe/issues/new .. _dataset: https://dataset.readthedocs.io/ .. _Documentation: https://luftdatenpumpe.readthedocs.io/ .. _Erneuerung der Luftdatenpumpe: https://community.hiveeyes.org/t/erneuerung-der-luftdatenpumpe/1199 .. _Geohash: https://en.wikipedia.org/wiki/Geohash .. _Grafana: https://github.com/grafana/grafana .. _InfluxDB: https://github.com/influxdata/influxdb .. _IRCELINE: https://www.irceline.be/en/documentation/open-data .. _jq: https://stedolan.github.io/jq/ .. _LICENSE: https://github.com/earthobservations/luftdatenpumpe/blob/main/LICENSE .. _luftdaten.info: https://web.archive.org/web/20220604103954/https://luftdaten.info/ .. _Luftdatenpumpe: https://github.com/earthobservations/luftdatenpumpe .. _MQTT: https://mqtt.org/ .. _Nominatim: https://wiki.openstreetmap.org/wiki/Nominatim .. _OpenAQ: https://openaq.org/ .. _OpenStreetMap: https://en.wikipedia.org/wiki/OpenStreetMap .. _Panodata Map Panel: https://community.panodata.org/t/panodata-map-panel-for-grafana/121 .. _PostgreSQL: https://www.postgresql.org/ .. _PostGIS: https://postgis.net/ .. _Python Package Index (PyPI): https://pypi.org/project/luftdatenpumpe/ .. _RDBMS: https://en.wikipedia.org/wiki/Relational_database_management_system .. _Sensor.Community: https://sensor.community/en/ .. _Source code: https://github.com/earthobservations/luftdatenpumpe .. _SQLAlchemy: https://www.sqlalchemy.org/ .. _The Hiveeyes Project: https://hiveeyes.org/ .. _time-series: https://en.wikipedia.org/wiki/Time_series_database
.. _install Luftdatenpumpe: https://luftdatenpumpe.readthedocs.io/setup/luftdatenpumpe.html .. _Luftdaten-Viewer Applications: https://luftdatenpumpe.readthedocs.io/setup/ldview-applications.html .. _Luftdaten-Viewer Cron Job: https://luftdatenpumpe.readthedocs.io/setup/ldview-cronjob.html .. _Luftdaten-Viewer Databases: https://luftdatenpumpe.readthedocs.io/setup/ldview-databases.html .. _Luftdaten-Viewer Grafana: https://luftdatenpumpe.readthedocs.io/setup/ldview-grafana-base.html .. _Luftdatenpumpe gallery: https://luftdatenpumpe.readthedocs.io/gallery.html .. _Luftdatenpumpe PostGIS tutorial: https://luftdatenpumpe.readthedocs.io/postgis.html .. _Luftdatenpumpe usage: https://luftdatenpumpe.readthedocs.io/usage.html .. _Python virtualenv: https://luftdatenpumpe.readthedocs.io/setup/virtualenv.html