RSRAE icon indicating copy to clipboard operation
RSRAE copied to clipboard

Robust Subspace Recovery Layer for Unsupervised Anomaly Detection

RSRAE

Robust Subspace Recovery Layer for Unsupervised Anomaly Detection

Getting Started

This repo implements the main experiments of our ICLR 2020 paper: https://openreview.net/forum?id=rylb3eBtwr

Prerequisites

  • python
  • tensorflow
  • keras
  • scikit-learn

Run the following to get the results in the paper.

python experiments.py -t caltech101 -l l21 -q 1 -r 5 -m 10 -z 1
python experiments.py -t fashion -l l21 -q 1 -r 5 -m 10 -z 1
python experiments.py -t 20news -l l21 -q 1 -r 5 -m 10 -z 1
python experiments.py -t reuters -l l21 -q 1 -r 5 -m 10 -z 1

Links for preprocessed data:

Caltech101: https://drive.google.com/open?id=1qSGEy3EMwD7XcndMjJvb-TexAaDwWBy8

20 Newsgroup: https://drive.google.com/open?id=1Cc53BQF39XT0VWJhDTaRBUopQ6Vg75q_

Reuters: https://drive.google.com/open?id=11Jg7UewpVRwp40V5yTuKeeARS0K2XMzF

Tiny Imagenet: https://drive.google.com/open?id=1jfceyTY4SSBxxHE2mohy2rwSjmCZTgNE

Citation

The following is the bibtex for citation.

@inproceedings{lai2020robust,
title={Robust Subspace Recovery Layer for Unsupervised Anomaly Detection},
author={Chieh-Hsin Lai and Dongmian Zou and Gilad Lerman},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=rylb3eBtwr},
}