skprogs
skprogs copied to clipboard
Basic programs for generating Slater-Koster files for the DFTB-method
SkProgs
Package containing a few programs that are useful in generating Slater-Koster files for the DFTB-method.
NOTE: This packages comes with minimal documentation and with a currently rather fragile user interface. It is considered to be neither stable nor robust. Make sure, you check results as careful as possible. Use at your own risk!
Installation
|build status|
Prerequisites
-
Fortran 2003 compliant compiler
-
CMake (>= 3.16)
-
Python3 (>= 3.2)
-
LAPACK/BLAS libraries (or compatible equivalents)
-
libXC library with f03 interface (version >=6.0.0)
Obtaining via Conda
The preferred way of obtaining SkProgs is to install it via the conda package
management framework using Miniconda <https://docs.conda.io/en/latest/miniconda.html>_ or Anaconda <https://www.anaconda.com/products/individual>_. Make sure to add/enable the
conda-forge channel in order to be able to access SkProgs::
conda config --add channels conda-forge conda config --set channel_priority strict
We recommend to set up a dedicated conda environment and to use the
mamba solver <https://mamba.readthedocs.io/>_ ::
conda create --name skprogs conda activate skprogs conda install conda-libmamba-solver conda config --set solver libmamba
to install the latest stable release of SkProgs (Fortran and Python components)::
mamba install skprogs skprogs-python
Building from source
Follow the usual CMake build workflow:
-
Configure the project, specify your compilers (e.g.
gfortran), the install location (i.e. path stored inYOUR_SKPROGS_INSTALL_FOLDER, e.g.$HOME/opt/skprogs) and the build directory (e.g._build)::FC=gfortran cmake -DCMAKE_INSTALL_PREFIX=YOUR_SKPROGS_INSTALL_FOLDER -B _build .
If libXC is installed in a non-standard location, you may need to specify either the
CMAKE_PREFIX_PATHenvironment variable (if libXC was built with CMake) or thePKG_CONFIG_PATHenvironment variable (if libXC was built with autotools) in order to guide the library search::CMAKE_PREFIX_PATH=YOUR_LIBXC_INSTALL_FOLDER FC=gfortan cmake [...]
PKG_CONFIG_PATH=FOLDER_WITH_LIBXC_PC_FILES FC=gfortran cmake [...]
-
If the configuration was successful, build the code ::
cmake --build _build -- -j
-
After successful build, you should test the code by running ::
pushd _build ctest -j popd
-
If the tests were successful, install the package via ::
cmake --install _build
Building libXC from source
Follow the usual CMake build workflow:
-
Clone the official libXC repository and checkout the latest release tag, e.g.
6.2.2::git clone https://gitlab.com/libxc/libxc.git libxc cd libxc/ git checkout 6.2.2
-
Configure the project, specify your compilers (e.g.
gfortranandgcc), the install location (i.e. path stored inYOUR_LIBXC_INSTALL_FOLDER, e.g.$HOME/opt/libxc) and the build directory (e.g._build)::FC=gfortran CC=gcc cmake -DENABLE_FORTRAN=True -DCMAKE_INSTALL_PREFIX=YOUR_LIBXC_INSTALL_FOLDER -B _build . -
If the configuration was successful, build the code ::
cmake --build _build -- -j
-
After successful build, you should test the code by running ::
pushd _build ctest -j popd
-
If the tests were successful, install the package via ::
cmake --install _build
Advanced build configuration
Controlling the toolchain file selection
You can override the toolchain file, and select a different provided case,
passing the -DTOOLCHAIN option with the relevant name, e.g.::
-DTOOLCHAIN=gnu
or ::
-DTOOLCHAIN=intel
or by setting the toolchain name in the SKPROGS_TOOLCHAIN environment
variable. If you want to load an external toolchain file instead of one from the
source tree, you can specify the file path with the -DTOOLCHAIN_FILE option
::
-DTOOLCHAIN_FILE=/path/to/myintel.cmake
or with the SKPROGS_TOOLCHAIN_FILE environment variable.
Similarly, you can also use an alternative build config file instead of
config.cmake in the source tree by specifying it with the
-DBUILD_CONFIG_FILE option or by defining the SKPROGS_BUILD_CONFIG_FILE
environment variable.
Generating SK-files
The basic steps of generating the electronic part of the SK-tables are as follows:
-
If you have build SkProgs from source, initialize the necessary environment variables by sourceing the
skprogs-activate.shscript (provided you have BASH or a compatible shell, otherwise inspect the script and set up the environment variables manually)::source <SKPROGS_INSTALL_FOLDER>/bin/skprogs-activate.sh
-
Then create a file
skdef.hsdcontaining the definitions for the elements and element pairs you wish to create. See theexamples/folder for some examples. -
Run the
skgenscript to create the SK-tables. For example, in order to generate the electronic part of the SK-tables for C, H and O with dummy (zero) repulsives added, issue ::skgen -o slateratom -t sktwocnt sktable -d C,H,O C,H,O
The SK-files will be created in the current folder. See the help (e.g.
skgen -h) for additional options.
Further documentation will be presented in a separate document later.
License
SkProgs is released under the GNU Lesser General Public License.
You can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version. See the files
COPYING <COPYING>_ and COPYING.LESSER <COPYING.LESSER>_ for the detailed
licensing conditions.
.. |build status| image:: https://img.shields.io/github/actions/workflow/status/dftbplus/skprogs/build.yml :target: https://github.com/dftbplus/skprogs/actions/