EDAR
EDAR copied to clipboard
PyTorch implementation of Deep Convolution Networks based on EDSR for Compression(Jpeg) Artifacts Reduction
EDAR
PyTorch implementation of Deep Convolution Network based on EDSR for Compression Artifacts Reduction
Requirements
- PyTorch
- tqdm
- Pillow
Network Architecture


Visual Results








Training
Dataset: DIV 2K train set + ...(custom dataset...)
Batch size: 16
Patch size: 48x48
Optimizer: Adam
Loss: L1 Loss
Input: Compressed Image by JPEG (jpeg_quality: rand(0 to 10)) / RGB
Output: Original Image / RGB
Epoch: 450
How to train
python train.py --images_dir [Your training image path] --outputs_dir ./ --jpeg_quality [10 to 100] --batch_size [num] --num_epochs [num]
Pre-trained model was trained using the below arguments.
python train.py --images_dir ../DIV2K_train_HR --outputs_dir ./ --jpeg_quality 10 --batch_size 16 --num_epochs 200
How to test
python test.py --weights_path [your trained weight].pth --image_path [your_image] --outputs_dir ./