determined icon indicating copy to clipboard operation
determined copied to clipboard

chore(deps): bump tensorflow-macos from 2.7.0 to 2.9.2 in /examples/tests

Open dependabot[bot] opened this issue 3 years ago • 4 comments

Bumps tensorflow-macos from 2.7.0 to 2.9.2.

Release notes

Sourced from tensorflow-macos's releases.

TensorFlow 2.9.1

Release 2.9.1

Add an upper bound for protobuf in setup.py since protobuf after version 3.20 is currently incompatible with TensorFlow. See tensorflow/tensorflow#53234, protocolbuffers/protobuf#9954 and tensorflow/tensorflow#56077.

TensorFlow 2.9.0

Release 2.9.0

Breaking Changes

  • Due to security issues in TF 2.8, all boosted trees code has now been removed (after being deprecated in TF 2.8). Users should switch to TensorFlow Decision Forests.
  • Build, Compilation and Packaging
    • TensorFlow is now compiled with _GLIBCXX_USE_CXX11_ABI=1. Downstream projects that encounter std::__cxx11 or [abi:cxx11] linker errors will need to adopt this compiler option. See the GNU C++ Library docs on Dual ABI.
    • TensorFlow Python wheels now specifically conform to manylinux2014, an upgrade from manylinux2010. The minimum Pip version supporting manylinux2014 is Pip 19.3 (see pypa/manylinux. This change may affect you if you have been using TensorFlow on a very old platform equivalent to CentOS 6, as manylinux2014 targets CentOS 7 as a compatibility base. Note that TensorFlow does not officially support either platform.
    • Discussion for these changes can be found on SIG Build's TensorFlow Community Forum thread
  • The tf.keras.mixed_precision.experimental API has been removed. The non-experimental symbols under tf.keras.mixed_precision have been available since TensorFlow 2.4 and should be used instead.
    • The non-experimental API has some minor differences from the experimental API. In most cases, you only need to make three minor changes:
      • Remove the word "experimental" from tf.keras.mixed_precision symbols. E.g., replace tf.keras.mixed_precision.experimental.global_policy with tf.keras.mixed_precision.global_policy.
      • Replace tf.keras.mixed_precision.experimental.set_policy with tf.keras.mixed_precision.set_global_policy. The experimental symbol set_policy was renamed to set_global_policy in the non-experimental API.
      • Replace LossScaleOptimizer(opt, "dynamic") with LossScaleOptimizer(opt). If you pass anything other than "dynamic" to the second argument, see (1) of the next section.
    • In the following rare cases, you need to make more changes when switching to the non-experimental API:
      • If you passed anything other than "dynamic" to the loss_scale argument (the second argument) of LossScaleOptimizer:
      • If you passed a value to the loss_scale argument (the second argument) of Policy:
        • The experimental version of Policy optionally took in a tf.compat.v1.mixed_precision.LossScale in the constructor, which defaulted to a dynamic loss scale for the "mixed_float16" policy and no loss scale for other policies. In Model.compile, if the model's policy had a loss scale, the optimizer would be wrapped with a LossScaleOptimizer. With the non-experimental Policy, there is no loss scale associated with the Policy, and Model.compile wraps the optimizer with a LossScaleOptimizer if and only if the policy is a "mixed_float16" policy. If you previously passed a LossScale to the experimental Policy, consider just removing it, as the default loss scaling behavior is usually what you want. If you really want to customize the loss scaling behavior, you can wrap your optimizer with a LossScaleOptimizer before passing it to Model.compile.
      • If you use the very rarely-used function tf.keras.mixed_precision.experimental.get_layer_policy:
        • Replace tf.keras.mixed_precision.experimental.get_layer_policy(layer) with layer.dtype_policy.
  • tf.mixed_precision.experimental.LossScale and its subclasses have been removed from the TF2 namespace. This symbols were very rarely used and were only useful in TF2 for use in the now-removed tf.keras.mixed_precision.experimental API. The symbols are still available under tf.compat.v1.mixed_precision.
  • The experimental_relax_shapes heuristic for tf.function has been deprecated and replaced with reduce_retracing which encompasses broader heuristics to reduce the number of retraces (see below)

Major Features and Improvements

  • tf.keras:

    • Added tf.keras.applications.resnet_rs models. This includes the ResNetRS50, ResNetRS101, ResNetRS152, ResNetRS200, ResNetRS270, ResNetRS350 and ResNetRS420 model architectures. The ResNetRS models are based on the architecture described in Revisiting ResNets: Improved Training and Scaling Strategies
    • Added tf.keras.optimizers.experimental.Optimizer. The reworked optimizer gives more control over different phases of optimizer calls, and is easier to customize. We provide Adam, SGD, Adadelta, AdaGrad and RMSprop optimizers based on tf.keras.optimizers.experimental.Optimizer. Generally the new optimizers work in the same way as the old ones, but support new constructor arguments. In the future, the symbols tf.keras.optimizers.Optimizer/Adam/etc will point to the new optimizers, and the previous generation of optimizers will be moved to tf.keras.optimizers.legacy.Optimizer/Adam/etc.
    • Added L2 unit normalization layer tf.keras.layers.UnitNormalization.
    • Added tf.keras.regularizers.OrthogonalRegularizer, a new regularizer that encourages orthogonality between the rows (or columns) or a weight matrix.
    • Added tf.keras.layers.RandomBrightness layer for image preprocessing.
    • Added APIs for switching between interactive logging and absl logging. By default, Keras always writes the logs to stdout. However, this is not optimal in a non-interactive environment, where you don't have access to stdout, but can only view the logs. You can use tf.keras.utils.disable_interactive_logging() to write the logs to ABSL logging. You can also use tf.keras.utils.enable_interactive_logging() to change it back to stdout, or tf.keras.utils.is_interactive_logging_enabled() to check if interactive logging is enabled.
    • Changed default value for the verbose argument of Model.evaluate() and Model.predict() to "auto", which defaults to verbose=1 for most cases and defaults to verbose=2 when used with ParameterServerStrategy or with interactive logging disabled.
    • Argument jit_compile in Model.compile() now applies to Model.evaluate() and Model.predict(). Setting jit_compile=True in compile() compiles the model's training, evaluation, and inference steps to XLA. Note that jit_compile=True may not necessarily work for all models.
    • Added DTensor-related Keras APIs under tf.keras.dtensor namespace. The APIs are still classified as experimental. You are welcome to try it out. Please check the tutoral and guide on https://www.tensorflow.org/ for more details about DTensor.
  • tf.lite:

    • Added TFLite builtin op support for the following TF ops:
      • tf.math.argmin/tf.math.argmax for input data type tf.bool on CPU.
      • tf.nn.gelu op for output data type tf.float32 and quantization on CPU.
    • Add nominal support for unsigned 16-bit integer tensor types. Note that very few TFLite kernels support this type natively, so its use in mobile ML authoring is generally discouraged.
    • Add support for unsigned 16-bit integer tensor types in cast op.
    • Experimental support for lowering list_ops.tensor_list_set_item with DynamicUpdateSlice.

... (truncated)

Changelog

Sourced from tensorflow-macos's changelog.

Release 2.10.0

Breaking Changes

  • Some files in tensorflow/python/training have been moved to tensorflow/python/tracking and tensorflow/python/checkpoint. Please update your imports accordingly, the old files will be removed in Release 2.11.
  • RNG behavior change for tf.keras.initializers. Keras initializers will now use stateless random ops to generate random numbers.
    • Both seeded and unseeded initializers will always generate the same values every time they are called (for a given variable shape). For unseeded initializers (seed=None), a random seed will be created and assigned at initializer creation (different initializer instances get different seeds).
    • An unseeded initializer will raise a warning if it is reused (called) multiple times. This is because it would produce the same values each time, which may not be intended.

Known Caveats

Major Features and Improvements

  • tf.lite:

    • New operations supported:
      • tflite SelectV2 now supports 5D.
      • tf.einsum is supported with multiple unknown shapes.
      • tf.unsortedsegmentprod op is supported.
    • Upgrade Flatbuffers v2.0.5 from v1.12.0
  • tf.keras:

    • Added tf.keras.models.experimental.SharpnessAwareMinimization. This class implements the sharpness-aware minimization technique, which boosts model performance on various tasks, e.g., ResNet on image classification.
    • EinsumDense layer moved from experimental to core. Its import path moved from tf.keras.layers.experimental.EinsumDense to tf.keras.layers.EinsumDense.
    • Added tf.keras.utils.audio_dataset_from_directory utility to easily generate audio classification datasets from directories of .wav files.
    • Added subset="both" support in tf.keras.utils.image_dataset_from_directory,

... (truncated)

Commits

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

dependabot[bot] avatar Jun 15 '22 14:06 dependabot[bot]

Thank you for your pull request and welcome to our community. We require contributors to sign our Contributor License Agreement, and we don't seem to have the users @dependabot[bot] on file. In order for us to review and merge your code, please start the CLA process at https://determined.ai/cla.

After we approve your CLA, we will update the contributors list (private) and comment @cla-bot[bot] check to rerun the check.

cla-bot[bot] avatar Jun 15 '22 14:06 cla-bot[bot]

Deploy Preview for determined-ui canceled.

Name Link
Latest commit a774e81501506ac4f435d9610655d2034065af76
Latest deploy log https://app.netlify.com/sites/determined-ui/deploys/62a9ee31c4ebea0008f5399d

netlify[bot] avatar Jun 15 '22 14:06 netlify[bot]

@cla-bot[bot] check

dannysauer avatar Jun 15 '22 16:06 dannysauer

The cla-bot has been summoned, and re-checked this pull request!

cla-bot[bot] avatar Jun 15 '22 16:06 cla-bot[bot]

Superseded by #5040.

dependabot[bot] avatar Sep 16 '22 01:09 dependabot[bot]