yolov7-face
yolov7-face copied to clipboard
Retraining of Yolov7 Model on Given Dataset
@derronqi Thank you for very good work .I am retraining the your model with your given dataset. I am running following command
!python3 train.py --device 0 --data data/widerface.yaml --img 640 640 --cfg cfg/yolov7-face.yaml --weights yolov7-w6.pt --cache-images --hyp data/hyp.face.yaml --batch-size 8
But I am getting following logs
0/299 7.46G 0.1189 0.05726 0 0.05056 0.008458 0.2352 49 640 0 0 0 0 0 0.006643 0
1/299 7.43G 0.1111 0.04434 0 0.03364 0.007088 0.1962 40 640 0 0 0 0 0 0.007927 0
2/299 7.43G 0.08521 0.03891 0 0.01996 0.005892 0.15 107 640 0 0 0 0 0 0.01211 0
3/299 7.43G 0.07363 0.0367 0 0.01529 0.00532 0.1309 50 640 0 0 0 0 0 0.01354 0
4/299 7.43G 0.06879 0.03564 0 0.01332 0.004998 0.1227 115 640 0 0 0 0 0 0.01686 0
5/299 7.43G 0.06605 0.03398 0 0.01222 0.004732 0.117 184 640 0 0 0 0 0 0.01902 0
6/299 7.43G 0.06441 0.03353 0 0.01157 0.004533 0.114 26 640 0 0 0 0 0 0.01897 0
7/299 7.43G 0.0632 0.0342 0 0.01113 0.004326 0.1129 108 640 0 0 0 0 0 0.01888 0
8/299 7.43G 0.06179 0.03387 0 0.01074 0.004169 0.1106 177 640 0 0 0 0 0 0.01998 0
9/299 7.43G 0.06074 0.03323 0 0.01038 0.004025 0.1084 66 640 0 0 0 0 0 0.02078 0
10/299 7.43G 0.06036 0.03261 0 0.01021 0.003909 0.1071 69 640 0 0 0 0 0 0.01992 0
11/299 7.43G 0.05991 0.03347 0 0.009964 0.003877 0.1072 64 640 0 0 0 0 0 0.02125 0
12/299 7.43G 0.05891 0.03231 0 0.009774 0.003759 0.1048 73 640 0 0 0 0 0 0.02161 0
13/299 7.43G 0.05861 0.0327 0 0.009598 0.00373 0.1046 73 640 0 0 0 0 0 0.02158 0
14/299 7.43G 0.05811 0.03283 0 0.009474 0.00368 0.1041 106 640 0 0 0 0 0 0.02172 0
15/299 7.43G 0.05784 0.03212 0 0.009277 0.003649 0.1029 58 640 0 0 0 0 0 0.02172 0
16/299 7.43G 0.05803 0.03266 0 0.009239 0.003596 0.1035 52 640 0 0 0 0 0 0.0223 0
17/299 7.43G 0.05772 0.03241 0 0.009141 0.00359 0.1029 71 640 0 0 0 0 0 0.02173 0
18/299 7.43G 0.05722 0.03202 0 0.008997 0.003549 0.1018 75 640 0 0 0 0 0 0.02224 0
19/299 7.43G 0.05693 0.03212 0 0.008923 0.003521 0.1015 22 640 0 0 0 0 0 0.02232 0
20/299 7.43G 0.05669 0.03197 0 0.008885 0.003536 0.1011 47 640 0 0 0 0 0 0.02232 0
21/299 7.43G 0.05651 0.03232 0 0.008761 0.003488 0.1011 79 640 0 0 0 0 0 0.02256 0
22/299 7.43G 0.05688 0.03258 0 0.008749 0.003523 0.1017 42 640 0 0 0 0 0 0.0224 0
Accuracy is not improving after 22 epoches. Can you give any Readme file to retrain the your network on your given dataset. Thanks
@NaeemKhanNiazi which dataset did you use?