reinforcement-learning
reinforcement-learning copied to clipboard
DQL size error
Hi.
I am new with DQL. I am working with AirSim simulator, and I coded an algorithm on Python on Visual Studio, using keras, to teatch to the drone to avoid obstacles. When I launched the train, the algorithm looks like to work normaly in the begining, but after iteration 400, 1300 or 2308 (it always changes) I have the following error that appear.
I used 'reshape' function only in 2 functions :
and :
Or, here is the full code.
` import numpy as np import airsim import time import math import tensorflow as tf import keras from airsim.utils import to_eularian_angles from airsim.utils import to_quaternion from keras.layers import Conv2D,Dense from keras.layers import Activation from keras.layers import MaxPool2D from keras.layers import Dropout from keras.layers import Input import keras.backend as K from keras.models import load_model from keras import Input from keras.layers import Flatten from keras.activations import softmax,elu,relu from keras.optimizers import Adam from keras.optimizers import adam from keras.models import Sequential from keras.optimizers import Adam, RMSprop from keras.models import Model #tf.compat.v1.disable_eager_execution() import random
from collections import deque
#tf.random_normal_initializer
client=airsim.MultirotorClient() z=-5 memory_size=10000000 pos_0=client.getMultirotorState().kinematics_estimated.position
state_space=[84, 84] action_size=3
def OurModel(state_size,action_space):
X_input=Input(state_size,name='Input')
X=Conv2D(filters=32,kernel_size=(8,8),strides=(2,2),padding='valid',activation='relu')(X_input)
X=MaxPool2D(pool_size=(2,2))(X)
X=Conv2D(filters=64,kernel_size=(5,5),strides=(3,3),padding='valid',activation='relu')(X)
X=MaxPool2D(pool_size=(2,2))(X)
X=Conv2D(filters=64,kernel_size=(2,2),strides=(1,1),padding='valid',activation='relu')(X)
X=Flatten()(X)
X=Dense(525,activation='relu')(X)
X=Dense(300,activation='relu')(X)
X_output=Dense(action_space,activation='softmax')(X)
model=Model(inputs = X_input, outputs = X_output)
#model.compile(loss=self.ourLoss(y_pred,y_real) , optimizer=Adam(lr=0.00025), metrics=["accuracy"])
model.compile(loss="mse", optimizer=RMSprop(lr=0.00025, rho=0.95, epsilon=0.01), metrics=["accuracy"])
model.summary()
return model
class MemoryClass(): def init(self,memory_size): self.memory_size=memory_size self.buffer=deque(maxlen=memory_size) self.batch_size=64 #self.start_training=20
def add(self,experience):
self.buffer.append(experience)
def sample(self):
buffer_size=len(self.buffer)
idx=np.random.choice(np.arange(buffer_size),self.batch_size,False)
return [self.buffer[k] for k in idx]
def replay(self):
batch=self.sample()
next_states_mb=np.array([each[0] for each in batch],ndmin=3)
actions_mb=np.array([each[1] for each in batch])
states_mb=np.array([each[2] for each in batch],ndmin=3)
rewards_mb=np.array([each[3] for each in batch])
dones_mb=np.array([each[4] for each in batch])
return next_states_mb, actions_mb, states_mb, rewards_mb,dones_mb
class Agent(): def init(self): self.state_size=(84, 84,1) self.action_space=3 #self.DQNNetwork=DQNN(state_size,action_space) self.model1=OurModel(self.state_size,self.action_space) self.memory_size=10000000 self.memory=MemoryClass(memory_size) self.gamma=0.75 self.epsilon_min=0.001 self.epsilon=1.0 self.epsilon_decay=0.995 self.episodes=120 self.max_step=120 self.step=0 self.count=0 self.pos0=client.getMultirotorState().kinematics_estimated.position self.z=-5 self.goal_pos=[50,50] self.initial_position=[0,0] self.initial_distance=np.sqrt((self.initial_position[0]-self.goal_pos[0])**2+(self.initial_position[1]-self.goal_pos[1])**2) self.batch_size=30
def generate_state(self):
responses = client.simGetImages([airsim.ImageRequest("0", airsim.ImageType.DepthPerspective, True, False)])
img1d = np.array(responses[0].image_data_float, dtype=np.float)
#img1d = 255/np.maximum(np.ones(img1d.size), img1d)
img2d = np.reshape(img1d, (responses[0].height, responses[0].width))
from PIL import Image
image = Image.fromarray(img2d)
im_final = np.array(image.resize((84, 84)).convert('L'))
im_final=np.reshape(im_final,[*self.state_size])
return im_final
def load(self, name):
self.model1 = load_model(name)
def save(self, name):
self.model1.save(name)
def get_yaw(self):
quaternions=client.getMultirotorState().kinematics_estimated.orientation
a,b,yaw_rad=to_eularian_angles(quaternions)
yaw_deg=math.degrees(yaw_rad)
return yaw_deg,yaw_rad
def rotate_left(self):
client.moveByRollPitchYawrateZAsync(0,0,0.2,self.z,3)
n=int(3*5)
D=[]
done=False
for k in range(n):
collision=client.simGetCollisionInfo().has_collided
done=collision
D.append(collision)
time.sleep(3/(n*300))
if True in D:
done=True
time.sleep(3/300)
time.sleep(5/300)
new_state=self.generate_state()
return done,new_state
def rotate_right(self):
client.moveByRollPitchYawrateZAsync(0,0,-0.2,self.z,3)
n=int(3*5)
D=[]
done=False
for k in range(n):
collision=client.simGetCollisionInfo().has_collided
done=collision
D.append(collision)
time.sleep(3/(n*300))
if True in D:
done=True
time.sleep(3/300)
time.sleep(5/300)
new_state=self.generate_state()
return done,new_state
def move_forward(self):
yaw_deg,yaw_rad=self.get_yaw()
#need rad
vx=math.cos(yaw_rad)*0.25
vy=math.sin(yaw_rad)*0.25
client.moveByVelocityAsync(vx,vy,0,10,airsim.DrivetrainType.ForwardOnly,airsim.YawMode(False))
done=False
n=int(10*5)
D=[]
done=False
for k in range(n):
collision=client.simGetCollisionInfo().has_collided
D.append(collision)
time.sleep(3.4/(n*300))
if True in D:
done=True
new_state=self.generate_state()
time.sleep(15/300)
return done,new_state
def step_function(self,action):
# Returns action,new_state, done
# Move forward 3 meters by Pitch
done=False
if action==0:
done,new_state=self.move_forward()
# Rotate to right by 20 degress
elif action==1:
done,new_state=self.rotate_right()
# Rotate to left by 30 degress
elif action==2:
done,new_state=self.rotate_left()
self.count+=1
return action,new_state,done
def compute_reward(self,done):
reward=0.0
pos_now=client.getMultirotorState().kinematics_estimated.position
dist=np.sqrt((pos_now.x_val-self.goal_pos[0])**2+(pos_now.y_val-self.goal_pos[1])**2)
print('dist: ',dist)
if done==False and self.step<self.max_step:
reward+=(self.initial_distance-dist)*6
if 10<self.step<40 and dist>self.initial_distance*3/4:
reward=-2-(self.step-10)
elif 50<self.step<80 and dist>self.initial_distance*2/4:
reward=-36-(self.step-50)
elif 80<self.step<self.max_step and dist>self.initial_distance*1/4:
reward=-80-(self.step-80)
elif dist<3:
reward+=650.0
elif done==True and dist>3:
reward-=180.0
print('reward: ',reward)
return reward
def choose_action(self,state):
r=np.random.rand()
print('r: ',r)
print('epsilon: ',self.epsilon)
print()
if r>self.epsilon and self.count>64:
#print('predicted action')
state=np.reshape(state,[1,*self.state_size])
#action=np.argmax(self.DQNNetwork.OurModel.predict(state))
action=np.argmax(self.model1.predict(state))
else:
action=random.randrange(self.action_space)
return action
def reset(self):
client.reset()
def initial_pos(self):
client.enableApiControl(True)
v=0.6
#z0=client.getMultirotorState().kinematics_estimated.position.z_val
#t=np.abs(z0-self.z)/v
client.moveToZAsync(self.z,v).join()
#time.sleep(t+1)
def epsilon_policy(self):
# Update epsilon
if self.epsilon>self.epsilon_min:
self.epsilon*=self.epsilon_decay
def train(self):
for episode in range(self.episodes):
self.initial_pos()
self.step=0
state=self.generate_state()
done=False
total_reward,episode_rewards=[],[]
while self.step<self.max_step:
self.step+=1
print('count:', self.count)
choice=self.choose_action(state)
self.epsilon_policy()
action,next_state,done=self.step_function(choice)
reward=self.compute_reward(done)
episode_rewards.append(reward)
if done==True:
total_reward.append(sum(episode_rewards))
self.memory.add([next_state,action,state,reward,done])
self.step=self.max_step
self.reset()
print("episode: {}, epsilon: {:.5}, total reward :{}".format(episode, self.epsilon,total_reward[-1]))
self.save("airsim-dqn.h5")
else:
state=next_state
self.memory.add([next_state,action,state,reward,done])
if len(self.memory.buffer)>64:
next_states_mb, actions_mb, states_mb, rewards_mb,dones_mb=self.memory.replay()
target = self.model1.predict(states_mb)
target_next = self.model1.predict(next_states_mb)
for k in range(len(dones_mb)):
if dones_mb[k]==True:
target[k][actions_mb[k]] = rewards_mb[k]
elif dones_mb[k]==False:
target[k][actions_mb[k]] = rewards_mb[k] + self.gamma * (np.amax(target_next[k]))
self.model1.fit(x=states_mb,y=target,batch_size=self.batch_size)
agent=Agent() agent.train() `