Extract embedding while using parameter "extraction_strategy="per_token""
Question
Hello! I used the script "embeddings_extraction.py", and I input the sentence as below:
basic_texts = [ {"text": "apple is delicious fruit"} ]
model = Inferencer.load(lang_model, task_type="embeddings", gpu=use_gpu, batch_size=batch_size, extraction_strategy="per_token", extraction_layer=-1, num_processes=0)
result = model.inference_from_dicts(dicts=basic_texts)
I set the parameter "extraction_strategy="per_token", and the printed len(result[0]["vec"]) is 256. result[0]["vec"][0] is a 768-dimensional vector.
And I am wondering this 768 vector result[0]["vec"][0] is the representation of the First word "apple", or the representation of "[CLS]" token?
Thank you very much!
Additional context Add any other context or screenshots about the question (optional).