UER-py
UER-py copied to clipboard
问一下t5预训练模型如何推理
尊敬的作者您好!
看了您的代码我受益匪浅,下面有一个问题请您指教,
我看到[Hugging Face]中有关T5预训练模型的推理代码,直接用transformers库推理的,如下:
from transformers import BertTokenizer, T5ForConditionalGeneration, Text2TextGenerationPipeline
tokenizer = BertTokenizer.from_pretrained("uer/t5-small-chinese-cluecorpussmall")
model = T5ForConditionalGeneration.from_pretrained("uer/t5-small-chinese-cluecorpussmall")
text2text_generator = Text2TextGenerationPipeline(model, tokenizer)
text2text_generator("中国的首都是extra0京", max_length=50, do_sample=False)
[{'generated_text': 'extra0 北 extra1 extra2 extra3 extra4 extra5'}]
请问一下UER风格的预训练T5模型如何推理,得到类似上面的效果?