Problem with the 03_03_vae_digits_train.ipynb
Thanks for the book. When running this notebook the program fails on the training step
TypeError: An op outside of the function building code is being passed a "Graph" tensor. It is possible to have Graph tensors leak out of the function building context by including a tf.init_scope in your function building code. For example, the following function will fail: @tf.function def has_init_scope(): my_constant = tf.constant(1.) with tf.init_scope(): added = my_constant * 2 The graph tensor has name: log_var/Identity:0
As far a I understand the issue lies somewhere there, however being a novice in tensorflow am I not able to understand how to resolve it.
def sampling(args): mu, log_var = args epsilon = K.random_normal(shape=K.shape(mu), mean=0., stddev=1.) return mu + K.exp(log_var / 2) * epsilon encoder_output = Lambda(sampling, name='encoder_output')([self.mu, self.log_var])
I would appreciate any help.
Hey godofnothing, I am not the author of the book. If you are just executing the code without any modification, and it is not working, this must be an error with your tensorflow/keras installation. probably you are using the wrong version.
Could you type your OS, version of python, keras and tf? and also which branch are you using?
Hi, @thephet , I am on Ubuntu 20.04 LTS, the python version is 3.8.2, tensorflow.version - '2.2.0', keras.version - '2.4.2'. Initially, I was running code on the master branch, however, the notebook 03_01 - failed to run due to the problem with callbacks, and I've read that this is due to mixing of keras and tensorflow.keras, after switching to the tensorflow branch, I managed to run 03_01, 03_02 notebooks. However, when going to variational encoder I have encountered the aforementioned problem
this issue can be solved easily by disabling the eager_execution which can be done by adding these to lines of code from tensorflow.python.framework.ops import disable_eager_execution disable_eager_execution() or else change the type of tensor if you go through the code of eager_exectuion you can find what's the problem. see the exceptions in the below code you can easily figure it out what's the problem:
from future import absolute_import from future import division from future import print_function
import six
from google.protobuf import text_format from tensorflow.core.framework import tensor_pb2 from tensorflow.python import pywrap_tfe from tensorflow.python.eager import core from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.util import compat
def quick_execute(op_name, num_outputs, inputs, attrs, ctx, name=None): """Execute a TensorFlow operation.
Args: op_name: Name of the TensorFlow operation (see REGISTER_OP in C++ code) to execute. num_outputs: The number of outputs of the operation to fetch. (Explicitly provided instead of being inferred for performance reasons). inputs: A list of inputs to the operation. Each entry should be a Tensor, or a value which can be passed to the Tensor constructor to create one. attrs: A tuple with alternating string attr names and attr values for this operation. ctx: The value of context.context(). name: Customized name for the operation.
Returns: List of output Tensor objects. The list is empty if there are no outputs
Raises: An exception on error. """ device_name = ctx.device_name
pylint: disable=protected-access
try: ctx.ensure_initialized() tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, inputs, attrs, num_outputs) except core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message six.raise_from(core._status_to_exception(e.code, message), None) except TypeError as e: keras_symbolic_tensors = [ x for x in inputs if ops._is_keras_symbolic_tensor(x) ] if keras_symbolic_tensors: raise core._SymbolicException( "Inputs to eager execution function cannot be Keras symbolic " "tensors, but found {}".format(keras_symbolic_tensors)) raise e
pylint: enable=protected-access
return tensors
def execute_with_cancellation(op_name, num_outputs, inputs, attrs, ctx, cancellation_manager, name=None): """Execute a TensorFlow operation.
Args:
op_name: Name of the TensorFlow operation (see REGISTER_OP in C++ code) to
execute.
num_outputs: The number of outputs of the operation to fetch. (Explicitly
provided instead of being inferred for performance reasons).
inputs: A list of inputs to the operation. Each entry should be a Tensor, or
a value which can be passed to the Tensor constructor to create one.
attrs: A tuple with alternating string attr names and attr values for this
operation.
ctx: The value of context.context().
cancellation_manager: a CancellationManager object that can be used to
cancel the operation.
name: Customized name for the operation.
Returns: List of output Tensor objects. The list is empty if there are no outputs
Raises: An exception on error. """ device_name = ctx.device_name
pylint: disable=protected-access
try: ctx.ensure_initialized() tensors = pywrap_tfe.TFE_Py_ExecuteCancelable(ctx._handle, device_name, op_name, inputs, attrs, cancellation_manager._impl, num_outputs) except core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message six.raise_from(core._status_to_exception(e.code, message), None) except TypeError as e: keras_symbolic_tensors = [ x for x in inputs if ops._is_keras_symbolic_tensor(x) ] if keras_symbolic_tensors: raise core._SymbolicException( "Inputs to eager execution function cannot be Keras symbolic " "tensors, but found {}".format(keras_symbolic_tensors)) raise e
pylint: enable=protected-access
return tensors
def execute_with_callbacks(op_name, num_outputs, inputs, attrs, ctx, name=None): """Monkey-patch to execute to enable execution callbacks.""" tensors = quick_execute(op_name, num_outputs, inputs, attrs, ctx, name) for callback in ctx.op_callbacks: callback(op_name, tuple(inputs), attrs, tensors, name)
return tensors
execute = quick_execute
def must_record_gradient(): """Import backprop if you want gradients recorded.""" return False
def record_gradient(unused_op_name, unused_inputs, unused_attrs, unused_results): """Import backprop if you want gradients recorded.""" pass
def make_float(v, arg_name): if not isinstance(v, compat.real_types): raise TypeError("Expected float for argument '%s' not %s." % (arg_name, repr(v))) return float(v)
def make_int(v, arg_name): if isinstance(v, six.string_types): raise TypeError("Expected int for argument '%s' not %s." % (arg_name, repr(v))) try: return int(v) except (ValueError, TypeError): raise TypeError("Expected int for argument '%s' not %s." % (arg_name, repr(v)))
def make_str(v, arg_name): if not isinstance(v, compat.bytes_or_text_types): raise TypeError("Expected string for argument '%s' not %s." % (arg_name, repr(v))) return compat.as_bytes(v) # Convert unicode strings to bytes.
def make_bool(v, arg_name): if not isinstance(v, bool): raise TypeError("Expected bool for argument '%s' not %s." % (arg_name, repr(v))) return v
def make_type(v, arg_name): try: v = dtypes.as_dtype(v).base_dtype except TypeError: raise TypeError("Expected DataType for argument '%s' not %s." % (arg_name, repr(v))) i = v.as_datatype_enum return i
def make_shape(v, arg_name): """Convert v into a list."""
Args:
v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
arg_name: String, for error messages.
Returns:
None if the rank is unknown, otherwise a list of ints (or Nones in the
position where the dimension is unknown).
try: shape = tensor_shape.as_shape(v) except TypeError as e: raise TypeError("Error converting %s to a TensorShape: %s." % (arg_name, e)) except ValueError as e: raise ValueError("Error converting %s to a TensorShape: %s." % (arg_name, e)) if shape.ndims is None: return None else: return shape.as_list()
def make_tensor(v, arg_name): """Ensure v is a TensorProto.""" if isinstance(v, tensor_pb2.TensorProto): return v elif isinstance(v, six.string_types): pb = tensor_pb2.TensorProto() text_format.Merge(v, pb) return pb raise TypeError( "Don't know how to convert %s to a TensorProto for argument '%s'." % (repr(v), arg_name))
def args_to_matching_eager(l, ctx, default_dtype=None):
"""Convert sequence l to eager same-type Tensors."""
if (not l) and (default_dtype is not None):
return default_dtype, [] # List is empty; assume default dtype.
EagerTensor = ops.EagerTensor # pylint: disable=invalid-name
for x in l:
if not isinstance(x, EagerTensor):
break
else: # note: intentional for-else
return l[0]._datatype_enum(), l # pylint: disable=protected-access
TODO(josh11b): Could we do a better job if we also passed in the
allowed dtypes when that was known?
Is some input already a Tensor with a dtype?
dtype = None for t in l: if isinstance(t, EagerTensor): dtype = t.dtype break
if dtype is None: # Infer a dtype based on the first value, and use that dtype for the # remaining values. ret = [] for t in l: ret.append( ops.convert_to_tensor( t, dtype, preferred_dtype=default_dtype, ctx=ctx)) if dtype is None: dtype = ret[-1].dtype else: ret = [ops.convert_to_tensor(t, dtype, ctx=ctx) for t in l]
TODO(slebedev): consider removing this as it leaks a Keras concept.
pylint: disable=protected-access
keras_symbolic_tensors = [x for x in ret if ops._is_keras_symbolic_tensor(x)] if keras_symbolic_tensors: raise core._SymbolicException( "Using symbolic output of a Keras layer during eager execution " "{}".format(keras_symbolic_tensors))
pylint: enable=protected-access
return dtype.as_datatype_enum, ret
def convert_to_mixed_eager_tensors(values, ctx): v = [ops.convert_to_tensor(t, ctx=ctx) for t in values] types = [t._datatype_enum() for t in v] # pylint: disable=protected-access return types, v
def args_to_mixed_eager_tensors(lists, ctx): """Converts a list of same-length lists of values to eager tensors.""" assert len(lists) > 1
Generate an error if len(lists[i]) is not the same for all i.
lists_ret = [] for l in lists[1:]: if len(l) != len(lists[0]): raise ValueError( "Expected list arguments to be the same length: %d != %d (%r vs. %r)." % (len(lists[0]), len(l), lists[0], l)) lists_ret.append([])
Convert the first element of each list first, then the second element, etc.
types = [] for i in range(len(lists[0])): dtype = None # If any list has a Tensor, use that dtype for l in lists: if isinstance(l[i], ops.EagerTensor): dtype = l[i].dtype break if dtype is None: # Convert the first one and use its dtype. lists_ret[0].append(ops.convert_to_tensor(lists[0][i], ctx=ctx)) dtype = lists_ret[0][i].dtype for j in range(1, len(lists)): lists_ret[j].append( ops.convert_to_tensor(lists[j][i], dtype=dtype, ctx=ctx)) else: # Convert everything to the found dtype. for j in range(len(lists)): lists_ret[j].append( ops.convert_to_tensor(lists[j][i], dtype=dtype, ctx=ctx)) types.append(dtype.as_datatype_enum) return types, lists_ret