rlcard
rlcard copied to clipboard
训练麻将打时候报错,看起来像是在已经
看起来像是dealer.deck中已经没有牌了, 但是还会执行step, 我看了一下代码,也不知道如何退出。
err:
C:\Users\pl\MiniConda3\python.exe D:/code/mahjong/t2.py
Logs saved in experiments/leduc_holdem_cfr_result/
Traceback (most recent call last):
File "D:/code/mahjong/t2.py", line 131, in <module>
train(args)
File "D:/code/mahjong/t2.py", line 65, in train
agent.train()
File "C:\Users\pl\MiniConda3\lib\site-packages\rlcard\agents\cfr_agent.py", line 41, in train
self.traverse_tree(probs, player_id)
File "C:\Users\pl\MiniConda3\lib\site-packages\rlcard\agents\cfr_agent.py", line 73, in traverse_tree
utility = self.traverse_tree(new_probs, player_id)
File "C:\Users\pl\MiniConda3\lib\site-packages\rlcard\agents\cfr_agent.py", line 73, in traverse_tree
utility = self.traverse_tree(new_probs, player_id)
File "C:\Users\pl\MiniConda3\lib\site-packages\rlcard\agents\cfr_agent.py", line 73, in traverse_tree
utility = self.traverse_tree(new_probs, player_id)
[Previous line repeated 86 more times]
File "C:\Users\pl\MiniConda3\lib\site-packages\rlcard\agents\cfr_agent.py", line 72, in traverse_tree
self.env.step(action)
File "C:\Users\pl\MiniConda3\lib\site-packages\rlcard\envs\env.py", line 84, in step
next_state, player_id = self.game.step(action)
File "C:\Users\pl\MiniConda3\lib\site-packages\rlcard\games\mahjong\game.py", line 68, in step
self.round.proceed_round(self.players, action)
File "C:\Users\pl\MiniConda3\lib\site-packages\rlcard\games\mahjong\round.py", line 78, in proceed_round
self.dealer.deal_cards(players[self.current_player], 1)
File "C:\Users\pl\MiniConda3\lib\site-packages\rlcard\games\mahjong\dealer.py", line 26, in deal_cards
player.hand.append(self.deck.pop())
IndexError: pop from empty list
code:
# -*- coding: utf-8 -*-
import os
import logging
import argparse
import rlcard
from rlcard.agents import (
CFRAgent,
RandomAgent,
)
from rlcard.utils import (
set_seed,
tournament,
Logger,
plot_curve,
)
def train(args):
# Make environments, CFR only supports Leduc Holdem
env = rlcard.make(
args.env,
config={
'seed': 0,
'allow_step_back': True,
}
)
eval_env = rlcard.make(
'leduc-holdem',
config={
'seed': 0,
}
)
# Seed numpy, torch, random
set_seed(args.seed)
# Initilize CFR Agent
agent = CFRAgent(
env,
os.path.join(
args.log_dir,
'cfr_model',
args.env,
),
)
agent.load() # If we have saved model, we first load the model
# Evaluate CFR against random
eval_env.set_agents([
agent,
RandomAgent(num_actions=env.num_actions),
])
# Start training
with Logger(args.log_dir) as logger:
for episode in range(args.num_episodes):
agent.train()
print('\rIteration {}'.format(episode), end='')
# Evaluate the performance. Play with Random agents.
if episode % args.evaluate_every == 0:
agent.save() # Save model
logger.log_performance(
episode,
tournament(
eval_env,
args.num_eval_games
)[0]
)
# Get the paths
csv_path, fig_path = logger.csv_path, logger.fig_path
# Plot the learning curve
plot_curve(csv_path, fig_path, 'cfr')
if __name__ == '__main__':
parser = argparse.ArgumentParser("CFR example in RLCard")
parser.add_argument(
'--env',
type=str,
default='mahjong',
choices=[
'blackjack',
'leduc-holdem',
'limit-holdem',
'doudizhu',
'mahjong',
'no-limit-holdem',
'uno',
'gin-rummy',
'bridge',
],
)
parser.add_argument(
'--seed',
type=int,
default=42,
)
parser.add_argument(
'--num_episodes',
type=int,
default=5000,
)
parser.add_argument(
'--num_eval_games',
type=int,
default=2000,
)
parser.add_argument(
'--evaluate_every',
type=int,
default=100,
)
parser.add_argument(
'--log_dir',
type=str,
default='experiments/leduc_holdem_cfr_result/',
)
args = parser.parse_args()
logging.basicConfig(level=logging.DEBUG)
train(args)