rlcard
rlcard copied to clipboard
AttributeError: module 'tensorflow' has no attribute 'variable_scope'
Hello,
I am using this: Python 3.8.6 [GCC 10.2.0] on linux python3 -c "import tensorflow as tf;print(tf.version)" 2.7.0 nvcc --version nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2020 NVIDIA Corporation Built on Mon_Oct_12_20:09:46_PDT_2020 Cuda compilation tools, release 11.1, V11.1.105 Build cuda_11.1.TC455_06.29190527_0
After running:
python train.py
Traceback (most recent call last):
File "train.py", line 109, in
File "/mnt/lustre/anamaria/AI/tensorflow/PhysNet/PhysNet-master/neural_network/NeuralNetwork.py", line 53, in init
with tf.variable_scope(self.scope):
AttributeError: module 'tensorflow' has no attribute 'variable_scope'
My script train.py looks as follows:
#!/usr/bin/env python3 import tensorflow as tf import numpy as np import os import sys import argparse import logging import string import random from shutil import copyfile from datetime import datetime from neural_network.NeuralNetwork import * from neural_network.activation_fn import * from training.Trainer import * from training.DataContainer import * from training.DataProvider import * from training.DataQueue import *
#used for creating a "unique" id for a run (almost impossible to generate the same twice) def id_generator(size=8, chars=string.ascii_uppercase + string.ascii_lowercase + string.digits): return ''.join(random.SystemRandom().choice(chars) for _ in range(size))
logging.basicConfig(filename='train.log',level=logging.DEBUG)
#define command line arguments parser = argparse.ArgumentParser(fromfile_prefix_chars='@') parser.add_argument("--restart", type=str, default=None, help="restart training from a specific folder") parser.add_argument("--num_features", type=int, help="dimensionality of feature vectors") parser.add_argument("--num_basis", type=int, help="number of radial basis functions") parser.add_argument("--num_blocks", type=int, help="number of interaction blocks") parser.add_argument("--num_residual_atomic", type=int, help="number of residual layers for atomic refinements") parser.add_argument("--num_residual_interaction", type=int, help="number of residual layers for the message phase") parser.add_argument("--num_residual_output", type=int, help="number of residual layers for the output blocks") parser.add_argument("--cutoff", default=10.0, type=float, help="cutoff distance for short range interactions") parser.add_argument("--use_electrostatic", default=1, type=int, help="use electrostatics in energy prediction (0/1)") parser.add_argument("--use_dispersion", default=1, type=int, help="use dispersion in energy prediction (0/1)") parser.add_argument("--grimme_s6", default=None, type=float, help="grimme s6 dispersion coefficient") parser.add_argument("--grimme_s8", default=None, type=float, help="grimme s8 dispersion coefficient") parser.add_argument("--grimme_a1", default=None, type=float, help="grimme a1 dispersion coefficient") parser.add_argument("--grimme_a2", default=None, type=float, help="grimme a2 dispersion coefficient") parser.add_argument("--dataset", type=str, help="file path to dataset") parser.add_argument("--num_train", type=int, help="number of training samples") parser.add_argument("--num_valid", type=int, help="number of validation samples") parser.add_argument("--seed", default=42, type=int, help="seed for splitting dataset into training/validation/test") parser.add_argument("--max_steps", type=int, help="maximum number of training steps") parser.add_argument("--learning_rate", default=0.001, type=float, help="learning rate used by the optimizer") parser.add_argument("--max_norm", default=1000.0, type=float, help="max norm for gradient clipping") parser.add_argument("--ema_decay", default=0.999, type=float, help="exponential moving average decay used by the trainer") parser.add_argument("--keep_prob", default=1.0, type=float, help="keep probability for dropout regularization of rbf layer") parser.add_argument("--l2lambda", type=float, help="lambda multiplier for l2 loss (regularization)") parser.add_argument("--nhlambda", type=float, help="lambda multiplier for non-hierarchicality loss (regularization)") parser.add_argument("--decay_steps", type=int, help="decay the learning rate every N steps by decay_rate") parser.add_argument("--decay_rate", type=float, help="factor with which the learning rate gets multiplied by every decay_steps steps") parser.add_argument("--batch_size", type=int, help="batch size used per training step") parser.add_argument("--valid_batch_size", type=int, help="batch size used for going through validation_set") parser.add_argument('--force_weight', default=52.91772105638412, type=float, help="this defines the force contribution to the loss function relative to the energy contribution (to take into account the different numerical range)") parser.add_argument('--charge_weight', default=14.399645351950548, type=float, help="this defines the charge contribution to the loss function relative to the energy contribution (to take into account the different numerical range)") parser.add_argument('--dipole_weight', default=27.211386024367243, type=float, help="this defines the dipole contribution to the loss function relative to the energy contribution (to take into account the different numerical range)") parser.add_argument('--summary_interval', type=int, help="write a summary every N steps") parser.add_argument('--validation_interval', type=int, help="check performance on validation set every N steps") parser.add_argument('--save_interval', type=int, help="save progress every N steps") parser.add_argument('--record_run_metadata', type=int, help="records metadata like memory consumption etc.")
#if no command line arguments are present, config file is parsed config_file='config.txt' if len(sys.argv) == 1: if os.path.isfile(config_file): args = parser.parse_args(["@"+config_file]) else: args = parser.parse_args(["--help"]) else: args = parser.parse_args()
#create directories #a unique directory name is created for this run based on the input if args.restart is None: directory=datetime.utcnow().strftime("%Y%m%d%H%M%S") + "_" + id_generator() +"_F"+str(args.num_features)+"K"+str(args.num_basis)+"b"+str(args.num_blocks)+"a"+str(args.num_residual_atomic)+"i"+str(args.num_residual_interaction)+"o"+str(args.num_residual_output)+"cut"+str(args.cutoff)+"e"+str(args.use_electrostatic)+"d"+str(args.use_dispersion)+"l2"+str(args.l2lambda)+"nh"+str(args.nhlambda)+"keep"+str(args.keep_prob) else: directory=args.restart
logging.info("creating directories...") if not os.path.exists(directory): os.makedirs(directory) best_dir = os.path.join(directory, 'best') if not os.path.exists(best_dir): os.makedirs(best_dir) log_dir = os.path.join(directory, 'logs') if not os.path.exists(log_dir): os.makedirs(log_dir) best_loss_file = os.path.join(best_dir, 'best_loss.npz') best_checkpoint = os.path.join(best_dir, 'best_model.ckpt') step_checkpoint = os.path.join(log_dir, 'model.ckpt')
#write config file (to restore command line arguments) logging.info("writing args to file...") with open(os.path.join(directory, config_file), 'w') as f: for arg in vars(args): f.write('--'+ arg + '='+ str(getattr(args, arg)) + "\n")
#load dataset logging.info("loading dataset...") data = DataContainer(args.dataset)
#generate DataProvider (splits dataset into training, validation and test set based on seed) data_provider = DataProvider(data, args.num_train, args.num_valid, args.batch_size, args.valid_batch_size, seed=args.seed)
#create neural network logging.info("creating neural network...") nn = NeuralNetwork(F=args.num_features, K=args.num_basis, sr_cut=args.cutoff, num_blocks=args.num_blocks, num_residual_atomic=args.num_residual_atomic, num_residual_interaction=args.num_residual_interaction, num_residual_output=args.num_residual_output, use_electrostatic=(args.use_electrostatic==1), use_dispersion=(args.use_dispersion==1), s6=args.grimme_s6, s8=args.grimme_s8, a1=args.grimme_a1, a2=args.grimme_a2, Eshift=data_provider.EperA_mean, Escale=data_provider.EperA_stdev, activation_fn=shifted_softplus, seed=None, scope="neural_network")
logging.info("prepare training...") #generate data queues for efficient training train_queue = DataQueue(data_provider.next_batch, capacity=1000, scope="train_data_queue") valid_queue = DataQueue(data_provider.next_valid_batch, capacity=args.num_valid//args.valid_batch_size, scope="valid_data_queue")
#get values for training and validation set Eref_t, Earef_t, Fref_t, Z_t, Dref_t, Qref_t, Qaref_t, R_t, idx_i_t, idx_j_t, batch_seg_t = train_queue.dequeue_op Eref_v, Earef_v, Fref_v, Z_v, Dref_v, Qref_v, Qaref_v, R_v, idx_i_v, idx_j_v, batch_seg_v = valid_queue.dequeue_op
#calculate all necessary quantities (unscaled partial charges, energies, forces) Ea_t, Qa_t, Dij_t, nhloss_t = nn.atomic_properties(Z_t, R_t, idx_i_t, idx_j_t) Ea_v, Qa_v, Dij_v, nhloss_v = nn.atomic_properties(Z_v, R_v, idx_i_v, idx_j_v) energy_t, forces_t = nn.energy_and_forces_from_atomic_properties(Ea_t, Qa_t, Dij_t, Z_t, R_t, idx_i_t, idx_j_t, Qref_t, batch_seg_t) energy_v, forces_v = nn.energy_and_forces_from_atomic_properties(Ea_v, Qa_v, Dij_v, Z_v, R_v, idx_i_v, idx_j_v, Qref_v, batch_seg_v) #total charge Qtot_t = tf.segment_sum(Qa_t, batch_seg_t) Qtot_v = tf.segment_sum(Qa_v, batch_seg_v) #dipole moment vector QR_t = tf.stack([Qa_tR_t[:,0], Qa_tR_t[:,1], Qa_tR_t[:,2]],1) QR_v = tf.stack([Qa_vR_v[:,0], Qa_vR_v[:,1], Qa_vR_v[:,2]],1) D_t = tf.segment_sum(QR_t, batch_seg_t) D_v = tf.segment_sum(QR_v, batch_seg_v)
#function to calculate loss, mean squared error, mean absolute error between two values def calculate_errors(val1, val2, weights=1): with tf.name_scope("calculate_errors"): delta = tf.abs(val1-val2) delta2 = delta**2 mse = tf.reduce_mean(delta2) mae = tf.reduce_mean(delta) loss = mae #mean absolute error loss return loss, mse, mae
with tf.name_scope("loss"): #calculate energy, force, charge and dipole errors/loss #energy if data.E is not None: eloss_t, emse_t, emae_t = calculate_errors(Eref_t, energy_t) eloss_v, emse_v, emae_v = calculate_errors(Eref_v, energy_v) else: eloss_t, emse_t, emae_t = tf.constant(0.0), tf.constant(0.0), tf.constant(0.0) eloss_v, emse_v, emae_v = tf.constant(0.0), tf.constant(0.0), tf.constant(0.0) #atomic energies if data.Ea is not None: ealoss_t, eamse_t, eamae_t = calculate_errors(Earef_t, Ea_t) ealoss_v, eamse_v, eamae_v = calculate_errors(Earef_v, Ea_v) else: ealoss_t, eamse_t, eamae_t = tf.constant(0.0), tf.constant(0.0), tf.constant(0.0) ealoss_v, eamse_v, eamae_v = tf.constant(0.0), tf.constant(0.0), tf.constant(0.0) #forces if data.F is not None: floss_t, fmse_t, fmae_t = calculate_errors(Fref_t, forces_t) floss_v, fmse_v, fmae_v = calculate_errors(Fref_v, forces_v) else: floss_t, fmse_t, fmae_t = tf.constant(0.0), tf.constant(0.0), tf.constant(0.0) floss_v, fmse_v, fmae_v = tf.constant(0.0), tf.constant(0.0), tf.constant(0.0) #charge if data.Q is not None: qloss_t, qmse_t, qmae_t = calculate_errors(Qref_t, Qtot_t) qloss_v, qmse_v, qmae_v = calculate_errors(Qref_v, Qtot_v) else: qloss_t, qmse_t, qmae_t = tf.constant(0.0), tf.constant(0.0), tf.constant(0.0) qloss_v, qmse_v, qmae_v = tf.constant(0.0), tf.constant(0.0), tf.constant(0.0) #atomic charges if data.Qa is not None: qaloss_t, qamse_t, qamae_t = calculate_errors(Qaref_t, Qa_t) qaloss_v, qamse_v, qamae_v = calculate_errors(Qaref_v, Qa_v) else: qaloss_t, qamse_t, qamae_t = tf.constant(0.0), tf.constant(0.0), tf.constant(0.0) qaloss_v, qamse_v, qamae_v = tf.constant(0.0), tf.constant(0.0), tf.constant(0.0) #dipole if data.D is not None: dloss_t, dmse_t, dmae_t = calculate_errors(Dref_t, D_t) dloss_v, dmse_v, dmae_v = calculate_errors(Dref_v, D_v) else: dloss_t, dmse_t, dmae_t = tf.constant(0.0), tf.constant(0.0), tf.constant(0.0) dloss_v, dmse_v, dmae_v = tf.constant(0.0), tf.constant(0.0), tf.constant(0.0)
#define additional variables (such that certain losses can be overwritten)
eloss_train = eloss_t
floss_train = floss_t
qloss_train = qloss_t
dloss_train = dloss_t
eloss_valid = eloss_v
floss_valid = floss_v
qloss_valid = qloss_v
dloss_valid = dloss_v
#atomic energies are present, so they replace the normal energy loss
if data.Ea is not None:
eloss_train = ealoss_t
eloss_valid = ealoss_v
#atomic charges are present, so they replace the normal charge loss and nullify dipole loss
if data.Qa is not None:
qloss_train = qaloss_t
qloss_valid = qaloss_v
dloss_train = tf.constant(0.0)
dloss_valid = tf.constant(0.0)
#define loss function (used to train the model)
l2loss = tf.reduce_mean(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
loss_t = eloss_train + args.force_weight*floss_train + args.charge_weight*qloss_train + args.dipole_weight*dloss_train + args.nhlambda*nhloss_t + args.l2lambda*l2loss
#create trainer trainer = Trainer(args.learning_rate, args.decay_steps, args.decay_rate, scope="trainer") with tf.name_scope("trainer_ops"): train_op = trainer.build_train_op(loss_t, args.ema_decay, args.max_norm) save_variable_backups_op = trainer.save_variable_backups() load_averaged_variables_op = trainer.load_averaged_variables() restore_variable_backups_op = trainer.restore_variable_backups()
#creates a summary from key-value pairs given a dictionary def create_summary(dictionary): summary = tf.Summary() for key, value in dictionary.items(): summary.value.add(tag=key, simple_value=value) return summary
#create summary writer nn_summary_op = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(logdir=log_dir, graph=tf.get_default_graph())
#create saver with tf.name_scope("saver"): saver = tf.train.Saver(max_to_keep=50)
#save/load best recorded loss (only the best model is saved) if os.path.isfile(best_loss_file): loss_file = np.load(best_loss_file) best_loss = loss_file["loss"].item() best_emae = loss_file["emae"].item() best_ermse = loss_file["ermse"].item() best_fmae = loss_file["fmae"].item() best_frmse = loss_file["frmse"].item() best_qmae = loss_file["qmae"].item() best_qrmse = loss_file["qrmse"].item() best_dmae = loss_file["dmae"].item() best_drmse = loss_file["drmse"].item() best_step = loss_file["step"].item() else: best_loss = np.Inf #initialize best loss to infinity best_emae = np.Inf best_ermse = np.Inf best_fmae = np.Inf best_frmse = np.Inf best_qmae = np.Inf best_qrmse = np.Inf best_dmae = np.Inf best_drmse = np.Inf best_step = 0. np.savez(best_loss_file, loss=best_loss, emae=best_emae, ermse=best_ermse, fmae=best_fmae, frmse=best_frmse, qmae=best_qmae, qrmse=best_qrmse, dmae=best_dmae, drmse=best_drmse, step=best_step)
#for calculating average performance on the training set def reset_averages(): return 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
def update_averages(num, tmploss_avg, tmploss, emse_avg, emse, emae_avg, emae, fmse_avg, fmse, fmae_avg, fmae, qmse_avg, qmse, qmae_avg, qmae, dmse_avg, dmse, dmae_avg, dmae): num += 1 tmploss_avg += (tmploss-tmploss_avg)/num emse_avg += (emse-emse_avg)/num emae_avg += (emae-emae_avg)/num fmse_avg += (fmse-fmse_avg)/num fmae_avg += (fmae-fmae_avg)/num qmse_avg += (qmse-qmse_avg)/num qmae_avg += (qmae-qmae_avg)/num dmse_avg += (dmse-dmse_avg)/num dmae_avg += (dmae-dmae_avg)/num return num, tmploss_avg, emse_avg, emae_avg, fmse_avg, fmae_avg, qmse_avg, qmae_avg, dmse_avg, dmae_avg
#initialize training set error averages num_t, tmploss_avg_t, emse_avg_t, emae_avg_t, fmse_avg_t, fmae_avg_t, qmse_avg_t, qmae_avg_t, dmse_avg_t, dmae_avg_t = reset_averages()
#create tensorflow session with tf.Session() as sess: if (args.record_run_metadata > 0): run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() else: run_options = None run_metadata = None
#start data queues
coord = tf.train.Coordinator()
train_queue.create_thread(sess, coord)
valid_queue.create_thread(sess, coord)
#initialize variables
#tf.compat.v1.global_variables_initializer().run()
tf.global_variables_initializer().run()
#restore latest checkpoint
checkpoint = tf.train.latest_checkpoint(log_dir)
if checkpoint is not None:
step = int(checkpoint.split('-')[-1]) #reads step from checkpoint filename
saver.restore(sess, checkpoint)
sess.run(trainer.global_step.assign(step))
else:
step = 0
#training loop
logging.info("starting training...")
while not coord.should_stop():
#finish training when maximum number of iterations is reached
if step > args.max_steps:
coord.request_stop()
break
#perform training step
step += 1
_, tmploss, emse, emae, fmse, fmae, qmse, qmae, dmse, dmae = sess.run([train_op, loss_t, emse_t, emae_t, fmse_t, fmae_t, qmse_t, qmae_t, dmse_t, dmae_t], options=run_options, feed_dict={nn.keep_prob: args.keep_prob}, run_metadata=run_metadata)
#update averages
num_t, tmploss_avg_t, emse_avg_t, emae_avg_t, fmse_avg_t, fmae_avg_t, qmse_avg_t, qmae_avg_t, dmse_avg_t, dmae_avg_t = update_averages(num_t, tmploss_avg_t, tmploss, emse_avg_t, emse, emae_avg_t, emae, fmse_avg_t, fmse, fmae_avg_t, fmae, qmse_avg_t, qmse, qmae_avg_t, qmae, dmse_avg_t, dmse, dmae_avg_t, dmae)
#save progress
if (step % args.save_interval == 0):
saver.save(sess, step_checkpoint, global_step=step)
#check performance on the validation set
if (step % args.validation_interval == 0):
#save backup variables and load averaged variables
sess.run(save_variable_backups_op)
sess.run(load_averaged_variables_op)
#initialize averages to 0
num_v, tmploss_avg_v, emse_avg_v, emae_avg_v, fmse_avg_v, fmae_avg_v, qmse_avg_v, qmae_avg_v, dmse_avg_v, dmae_avg_v = reset_averages()
#compute averages
for i in range(args.num_valid//args.valid_batch_size):
tmploss, emse, emae, fmse, fmae, qmse, qmae, dmse, dmae = sess.run([loss_v, emse_v, emae_v, fmse_v, fmae_v, qmse_v, qmae_v, dmse_v, dmae_v])
num_v, tmploss_avg_v, emse_avg_v, emae_avg_v, fmse_avg_v, fmae_avg_v, qmse_avg_v, qmae_avg_v, dmse_avg_v, dmae_avg_v = update_averages(num_v, tmploss_avg_v, tmploss, emse_avg_v, emse, emae_avg_v, emae, fmse_avg_v, fmse, fmae_avg_v, fmae, qmse_avg_v, qmse, qmae_avg_v, qmae, dmse_avg_v, dmse, dmae_avg_v, dmae)
#store results in dictionary
results = {}
results["loss_valid"] = tmploss_avg_v
if data.E is not None:
results["energy_mae_valid"] = emae_avg_v
results["energy_rmse_valid"] = np.sqrt(emse_avg_v)
if data.F is not None:
results["forces_mae_valid"] = fmae_avg_v
results["forces_rmse_valid"] = np.sqrt(fmse_avg_v)
if data.Q is not None:
results["charge_mae_valid"] = qmae_avg_v
results["charge_rmse_valid"] = np.sqrt(qmse_avg_v)
if data.D is not None:
results["dipole_mae_valid"] = dmae_avg_v
results["dipole_rmse_valid"] = np.sqrt(dmse_avg_v)
if results["loss_valid"] < best_loss:
best_loss = results["loss_valid"]
if data.E is not None:
best_emae = results["energy_mae_valid"]
best_ermse = results["energy_rmse_valid"]
else:
best_emae = np.Inf
best_ermse = np.Inf
if data.F is not None:
best_fmae = results["forces_mae_valid"]
best_frmse = results["forces_rmse_valid"]
else:
best_fmae = np.Inf
best_frmse = np.Inf
if data.Q is not None:
best_qmae = results["charge_mae_valid"]
best_qrmse = results["charge_rmse_valid"]
else:
best_qmae = np.Inf
best_qrmse = np.Inf
if data.D is not None:
best_dmae = results["dipole_mae_valid"]
best_drmse = results["dipole_rmse_valid"]
else:
best_dmae = np.Inf
best_drmse = np.Inf
best_step = step
np.savez(best_loss_file, loss=best_loss, emae=best_emae, ermse=best_ermse,
fmae=best_fmae, frmse=best_frmse,
qmae=best_qmae, qrmse=best_qrmse,
dmae=best_dmae, drmse=best_drmse,
step=best_step)
nn.save(sess, best_checkpoint, global_step=step)
results["loss_best"] = best_loss
if data.E is not None:
results["energy_mae_best"] = best_emae
results["energy_rmse_best"] = best_ermse
if data.F is not None:
results["forces_mae_best"] = best_fmae
results["forces_rmse_best"] = best_frmse
if data.Q is not None:
results["charge_mae_best"] = best_qmae
results["charge_rmse_best"] = best_qrmse
if data.D is not None:
results["dipole_mae_best"] = best_dmae
results["dipole_rmse_best"] = best_drmse
summary = create_summary(results)
summary_writer.add_summary(summary, global_step=step)
#restore backup variables
sess.run(restore_variable_backups_op)
#generate summaries
if (step % args.summary_interval == 0) and (step > 0):
results = {}
results["loss_train"] = tmploss_avg_t
if data.E is not None:
results["energy_mae_train"] = emae_avg_t
results["energy_rmse_train"] = np.sqrt(emse_avg_t)
if data.F is not None:
results["forces_mae_train"] = fmae_avg_t
results["forces_rmse_train"] = np.sqrt(fmse_avg_t)
if data.Q is not None:
results["charge_mae_train"] = qmae_avg_t
results["charge_rmse_train"] = np.sqrt(qmse_avg_t)
if data.D is not None:
results["dipole_mae_train"] = dmae_avg_t
results["dipole_rmse_train"] = np.sqrt(dmse_avg_t)
num_t, tmploss_avg_t, emse_avg_t, emae_avg_t, fmse_avg_t, fmae_avg_t, qmse_avg_t, qmae_avg_t, dmse_avg_t, dmae_avg_t = reset_averages()
summary = create_summary(results)
summary_writer.add_summary(summary, global_step=step)
nn_summary = nn_summary_op.eval()
summary_writer.add_summary(nn_summary, global_step=step)
if (args.record_run_metadata > 0):
summary_writer.add_run_metadata(run_metadata, 'step %d' % step, global_step=step)
if data.E is not None:
print(str(step)+'/'+str(args.max_steps), "loss:", results["loss_train"], "best:", best_loss, "emae:", results["energy_mae_train"], "best:", best_emae)
@anamariaUIC It seems not about RLCard package. To the best of my knowledge, it is because TensorFlow 2.0 does support this. Try to downgrade to TensorFlow 1.X. Hope this will help!