autokaggle
autokaggle copied to clipboard
Automated Machine Learning (AutoML) for Kaggle Competition
autokaggle
Automated Machine Learning (AutoML) for Kaggle Competition
Automated tabular classifier tutorial.
Class TabularClassifier
and TabularRegressor
are designed for automated generate best performance shallow/deep architecture
for a given tabular dataset. (Currently, theis module only supports lightgbm classifier and regressor.)
clf = TabularClassifier(verbose=True)
clf.fit(x_train, y_train, time_limit=12 * 60 * 60, data_info=datainfo)
- x_train: string format text data
- y_train: int format text label
- data_info: a numpy.array describing the feature types (time, numerical or categorical) of each column in x_train.
Notes: Preprocessing of the tabular data:
- Class
[TabularPreprocessor]
involves several automated feature preprocessing and engineering operation for tabular data . *The input data should be in numpy array format for the classTabularClassifier
andTabularRegressor
.