ModuleNotFoundError: No module named 'MultiScaleDeformableAttention'
- 你好,我的电脑系统是Windows11,其他的python环境和mmseg都是根据readme配置的,在编译'MultiScaleDeformableAttention',执行指令bash make.sh时,出现
running build_ext
E:\mmseg\ops\torch\utils\cpp_extension.py:370: UserWarning: Attempted to use ninja as the BuildExtension backend but we could not find ninja.. Falling back to using the slow distutils backend.
warnings.warn(msg.format('we could not find ninja.'))
E:\mmseg\ops\torch\utils\cpp_extension.py:305: UserWarning: Error checking compiler version for cl: 'utf-8' codec can't decode byte 0xd3 in position 0: invalid continuation byte
warnings.warn(f'Error checking compiler version for {compiler}: {error}')
building 'MultiScaleDeformableAttention' extension
E:\VS\1\VC\Tools\MSVC\14.29.30133\bin\HostX86\x64\cl.exe /c /nologo /O2 /W3 /GL /DNDEBUG /MD -DWITH_CUDA -IE:\mmseg\ops\src -IE:\mmseg\ops\torch\include -IE:\mmseg\ops\torch\include\t
orch\csrc\api\include -IE:\mmseg\ops\torch\include\TH -IE:\mmseg\ops\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\include" -IE:\Miniconda3lj\envs\open
mmlab\include -IE:\Miniconda3lj\envs\openmmlab\Include -IE:\VS\1\VC\Tools\MSVC\14.29.30133\ATLMFC\include -IE:\VS\1\VC\Tools\MSVC\14.29.30133\include "-IE:\Windows Kits\10\include\10.
0.19041.0\ucrt" "-IE:\Windows Kits\10\include\10.0.19041.0\shared" "-IE:\Windows Kits\10\include\10.0.19041.0\um" "-IE:\Windows Kits\10\include\10.0.19041.0\winrt" "-IE:\Windows Kits
10\include\10.0.19041.0\cppwinrt" -IE:\VS\1\VC\Tools\MSVC\14.29.30133\include "-IE:\Windows Kits\10\Include\10.0.19041.0\ucrt" "-IE:\Windows Kits\10\Include\10.0.19041.0\um" "-IE:\Win
dows Kits\10\Include\10.0.19041.0\cppwinrt" "-IE:\Windows Kits\10\Include\10.0.19041.0\shared" "-IE:\Windows Kits\10\Include\10.0.19041.0\winrt" /EHsc /TpE:\mmseg\ops\src\cpu\ms_defor
m_attn_cpu.cpp /Fobuild\temp.win-amd64-cpython-38\Release\mmseg\ops\src\cpu\ms_deform_attn_cpu.obj /MD /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /EHsc -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=MultiScaleDeformableAttention -D_GLIBCXX_USE_CXX11_ABI=0
ms_deform_attn_cpu.cpp
E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=at::Tensor
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t<T>”的引用
with
[
T=at::Tensor
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base<T>”的引用
with
[
T=at::Tensor
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBaseat::Tensor”的引用
E:\mmseg\ops\torch\include\ATen/core/TensorBody.h(734): note: 查看对正在编译的 类 模板 实例化“c10::optionalat::Tensor”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=at::Tensor
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=at::Generator
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t<T>”的引用
with
[
T=at::Generator
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base<T>”的引用
with
[
T=at::Generator
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBaseat::Generator”的引用
E:\mmseg\ops\torch\include\ATen/core/TensorBody.h(800): note: 查看对正在编译的 类 模板 实例化“c10::optionalat::Generator”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=at::Generator
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=c10::impl::InlineDeviceGuardc10::impl::VirtualGuardImpl
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t<T>”的引用
with
[
T=c10::impl::InlineDeviceGuardc10::impl::VirtualGuardImpl
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base<T>”的引用
with
[
T=c10::impl::InlineDeviceGuardc10::impl::VirtualGuardImpl
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase<c10::impl::InlineDeviceGuardc10::impl::VirtualGuardImpl>”的引用
E:\mmseg\ops\torch\include\c10/core/impl/InlineDeviceGuard.h(427): note: 查看对正在编译的 类 模板 实例化“c10::optional<c10::impl::InlineDeviceGuardc10::impl::VirtualGuardImpl>”的引 用
E:\mmseg\ops\torch\include\c10/core/DeviceGuard.h(178): note: 查看对正在编译的 类 模板 实例化“c10::impl::InlineOptionalDeviceGuardc10::impl::VirtualGuardImpl”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=c10::impl::InlineDeviceGuardc10::impl::VirtualGuardImpl
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=std::string
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t<T>”的引用
with
[
T=std::string
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base<T>”的引用
with
[
T=std::string
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBasestd::string”的引用
E:\mmseg\ops\torch\include\ATen/core/jit_type_base.h(107): note: 查看对正在编译的 类 模板 实例化“c10::optionalstd::string”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=std::string
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=std::vector<c10::ShapeSymbol,std::allocatorc10::ShapeSymbol>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t<T>”的引用
with
[
T=std::vector<c10::ShapeSymbol,std::allocatorc10::ShapeSymbol>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base<T>”的引用
with
[
T=std::vector<c10::ShapeSymbol,std::allocatorc10::ShapeSymbol>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase<std::vector<c10::ShapeSymbol,std::allocatorc10::ShapeSymbol>>”的引用
E:\mmseg\ops\torch\include\ATen/core/jit_type.h(351): note: 查看对正在编译的 类 模板 实例化“c10::optional<std::vector<c10::ShapeSymbol,std::allocatorc10::ShapeSymbol>>”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=std::vector<c10::ShapeSymbol,std::allocatorc10::ShapeSymbol>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=std::vector<c10::optionalc10::Stride,std::allocator<c10::optionalc10::Stride>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t<T>”的引用
with
[
T=std::vector<c10::optionalc10::Stride,std::allocator<c10::optionalc10::Stride>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base<T>”的引用
with
[
T=std::vector<c10::optionalc10::Stride,std::allocator<c10::optionalc10::Stride>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase<std::vector<c10::optionalc10::Stride,std::allocator<c10::optionalc10::Stride>>>”的引用
E:\mmseg\ops\torch\include\ATen/core/jit_type.h(425): note: 查看对正在编译的 类 模板 实例化“c10::optional<std::vector<c10::optionalc10::Stride,std::allocator<c10::optionalc10::Stride>>>”的引用
E:\mmseg\ops\torch\include\ATen/core/jit_type.h(664): note: 查看对正在编译的 类 模板 实例化“c10::VaryingShapec10::Stride”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=std::vector<c10::optionalc10::Stride,std::allocator<c10::optionalc10::Stride>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=std::vector<c10::optional<int64_t>,std::allocator<c10::optional<int64_t>>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t<T>”的引用
with
[
T=std::vector<c10::optional<int64_t>,std::allocator<c10::optional<int64_t>>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base<T>”的引用
with
[
T=std::vector<c10::optional<int64_t>,std::allocator<c10::optional<int64_t>>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase<std::vector<c10::optional<int64_t>,std::allocator<c10::optional<int64_t>>>>”的引用
E:\mmseg\ops\torch\include\ATen/core/jit_type.h(425): note: 查看对正在编译的 类 模板 实例化“c10::optional<std::vector<c10::optional<int64_t>,std::allocator<c10::optional<int64_t>>>>” 的引用
E:\mmseg\ops\torch\include\ATen/core/jit_type.h(470): note: 查看对正在编译的 类 模板 实例化“c10::VaryingShape<int64_t>”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=std::vector<c10::optional<int64_t>,std::allocator<c10::optional<int64_t>>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=std::vector<int64_t,std::allocator<int64_t>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t<T>”的引用
with
[
T=std::vector<int64_t,std::allocator<int64_t>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base<T>”的引用
with
[
T=std::vector<int64_t,std::allocator<int64_t>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase<std::vector<int64_t,std::allocator<int64_t>>>”的引用
E:\mmseg\ops\torch\include\ATen/core/jit_type.h(568): note: 查看对正在编译的 类 模板 实例化“c10::optional<std::vector<int64_t,std::allocator<int64_t>>>”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=std::vector<int64_t,std::allocator<int64_t>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=c10::QualifiedName
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t<T>”的引用
with
[
T=c10::QualifiedName
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base<T>”的引用
with
[
T=c10::QualifiedName
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBasec10::QualifiedName”的引用
E:\mmseg\ops\torch\include\ATen/core/jit_type.h(903): note: 查看对正在编译的 类 模板 实例化“c10::optionalc10::QualifiedName”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=c10::QualifiedName
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=c10::impl::InlineStreamGuardc10::impl::VirtualGuardImpl
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t<T>”的引用
with
[
T=c10::impl::InlineStreamGuardc10::impl::VirtualGuardImpl
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base<T>”的引用
with
[
T=c10::impl::InlineStreamGuardc10::impl::VirtualGuardImpl
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase<c10::impl::InlineStreamGuardc10::impl::VirtualGuardImpl>”的引用
E:\mmseg\ops\torch\include\c10/core/impl/InlineStreamGuard.h(196): note: 查看对正在编译的 类 模板 实例化“c10::optional<c10::impl::InlineStreamGuardc10::impl::VirtualGuardImpl>”的引 用
E:\mmseg\ops\torch\include\c10/core/StreamGuard.h(139): note: 查看对正在编译的 类 模板 实例化“c10::impl::InlineOptionalStreamGuardc10::impl::VirtualGuardImpl”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=c10::impl::InlineStreamGuardc10::impl::VirtualGuardImpl
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=c10::impl::VirtualGuardImpl
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t<T>”的引用
with
[
T=c10::impl::VirtualGuardImpl
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base<T>”的引用
with
[
T=c10::impl::VirtualGuardImpl
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBasec10::impl::VirtualGuardImpl”的引用
E:\mmseg\ops\torch\include\c10/core/impl/InlineStreamGuard.h(231): note: 查看对正在编译的 类 模板 实例化“c10::optional<T>”的引用
with
[
T=c10::impl::VirtualGuardImpl
]
E:\mmseg\ops\torch\include\c10/core/StreamGuard.h(162): note: 查看对正在编译的 类 模板 实例化“c10::impl::InlineMultiStreamGuardc10::impl::VirtualGuardImpl”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=c10::impl::VirtualGuardImpl
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=std::vector<std::reference_wrapper<const c10::DataPtr>,std::allocator<std::reference_wrapper<const c10::DataPtr>>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t<T>”的引用
with
[
T=std::vector<std::reference_wrapper<const c10::DataPtr>,std::allocator<std::reference_wrapper<const c10::DataPtr>>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base<T>”的引用
with
[
T=std::vector<std::reference_wrapper<const c10::DataPtr>,std::allocator<std::reference_wrapper<const c10::DataPtr>>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBase<std::vector<std::reference_wrapper<const c10::DataPtr>,std::allocator<std::reference_wrapper<const c10::DataPtr>>>>”的引用
E:\mmseg\ops\torch\include\ATen/core/ivalue_inl.h(362): note: 查看对正在编译的 类 模板 实例化“c10::optional<std::vector<std::reference_wrapper<const c10::DataPtr>,std::allocator<std::reference_wrapper<const c10::DataPtr>>>>”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=std::vector<std::reference_wrapper<const c10::DataPtr>,std::allocator<std::reference_wrapper<const c10::DataPtr>>>
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=c10::OperatorName
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t<T>”的引用
with
[
T=c10::OperatorName
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base<T>”的引用
with
[
T=c10::OperatorName
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBasec10::OperatorName”的引用
E:\mmseg\ops\torch\include\ATen/record_function.h(306): note: 查看对正在编译的 类 模板 实例化“c10::optionalc10::OperatorName”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=c10::OperatorName
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(183): warning C4624: “c10::constexpr_storage_t<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=at::DimVector
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(367): note: 查看对正在编译的 类 模板 实例化“c10::constexpr_storage_t<T>”的引用
with
[
T=at::DimVector
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 类 模板 实例化“c10::trivially_copyable_optimization_optional_base<T>”的引用
with
[
T=at::DimVector
]
E:\mmseg\ops\torch\include\c10/util/Optional.h(427): note: 查看对正在编译的 别名 模板 实例化“c10::OptionalBaseat::DimVector”的引用
E:\mmseg\ops\torch\include\ATen/TensorIterator.h(616): note: 查看对正在编译的 类 模板 实例化“c10::optionalat::DimVector”的引用
E:\mmseg\ops\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base<T>”: 已将析构函数隐式定义为“已删除”
with
[
T=at::DimVector
]
"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin\nvcc" -c E:\mmseg\ops\src\cuda\ms_deform_attn_cuda.cu -o build\temp.win-amd64-cpython-38\Release\mmseg\ops\src\cuda\ms_de
form_attn_cuda.obj -IE:\mmseg\ops\src -IE:\mmseg\ops\torch\include -IE:\mmseg\ops\torch\include\torch\csrc\api\include -IE:\mmseg\ops\torch\include\TH -IE:\mmseg\ops\torch\include\THC
"-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\include" -IE:\Miniconda3lj\envs\openmmlab\include -IE:\Miniconda3lj\envs\openmmlab\Include -IE:\VS\1\VC\Tools\MSVC\14.29.3
0133\ATLMFC\include -IE:\VS\1\VC\Tools\MSVC\14.29.30133\include "-IE:\Windows Kits\10\include\10.0.19041.0\ucrt" "-IE:\Windows Kits\10\include\10.0.19041.0\shared" "-IE:\Windows Kits
10\include\10.0.19041.0\um" "-IE:\Windows Kits\10\include\10.0.19041.0\winrt" "-IE:\Windows Kits\10\include\10.0.19041.0\cppwinrt" -IE:\VS\1\VC\Tools\MSVC\14.29.30133\include "-IE:\Wi
ndows Kits\10\Include\10.0.19041.0\ucrt" "-IE:\Windows Kits\10\Include\10.0.19041.0\um" "-IE:\Windows Kits\10\Include\10.0.19041.0\cppwinrt" "-IE:\Windows Kits\10\Include\10.0.19041.0
\shared" "-IE:\Windows Kits\10\Include\10.0.19041.0\winrt" -Xcudafe --diag_suppress=dll_interface_conflict_dllexport_assumed -Xcudafe --diag_suppress=dll_interface_conflict_none_assum
ed -Xcudafe --diag_suppress=field_without_dll_interface -Xcudafe --diag_suppress=base_class_has_different_dll_interface -Xcompiler /EHsc -Xcompiler /wd4190 -Xcompiler /wd4018 -Xcompil
er /wd4275 -Xcompiler /wd4267 -Xcompiler /wd4244 -Xcompiler /wd4251 -Xcompiler /wd4819 -Xcompiler /MD -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_
CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -DTORC
H_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=MultiScaleDeformableAttention -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_86,code=sm_86 --use-local-env
ms_deform_attn_cuda.cu
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(127): error: identifier "grad_output_n" is undefined
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: type name is not allowed
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: expected an expression
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "per_sample_loc_size" is undefined
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "per_attn_weight_size" is undefined
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "grad_sampling_loc" is undefined
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: type name is not allowed
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: expected an expression
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "grad_attn_weight" is undefined
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: type name is not allowed
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: expected an expression
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: no instance of function template "ms_deformable_col2im_cuda" matches the argument list
argument types are: (c10::cuda::CUDAStream,
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: type name is not allowed
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: expected an expression
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "per_sample_loc_size" is undefined
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "per_attn_weight_size" is undefined
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "grad_sampling_loc" is undefined
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: type name is not allowed
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: expected an expression
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: identifier "grad_attn_weight" is undefined
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: type name is not allowed
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: expected an expression
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(128): error: no instance of function template "ms_deformable_col2im_cuda" matches the argument list
argument types are: (c10::cuda::CUDAStream,
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(145): error: identifier "grad_sampling_loc" is undefined
E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(145): error: identifier "grad_attn_weight" is undefined
E:/mmseg/ops/src\cuda/ms_deform_im2col_cuda.cuh(258): warning: variable "q_col" was declared but never referenced detected during: instantiation of "void ms_deformable_im2col_gpu_kernel(int, const scalar_t *, const int64_t *, const int64_t *, const scalar_t *, const scalar_t *, int, int, int, int, int, int, int, scalar_t *) [with scalar_t=double]" (943): here instantiation of "void ms_deformable_im2col_cuda(cudaStream_t, const scalar_t *, const int64_t *, const int64_t *, const scalar_t *, const scalar_t *, int, int, int, int, int, int, int, scalar_t *) [with scalar_t=double]" E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(64): here
E:/mmseg/ops/src\cuda/ms_deform_im2col_cuda.cuh(258): warning: variable "q_col" was declared but never referenced detected during: instantiation of "void ms_deformable_im2col_gpu_kernel(int, const scalar_t *, const int64_t *, const int64_t *, const scalar_t *, const scalar_t *, int, int, int, int, int, int, int, scalar_t *) [with scalar_t=float]" (943): here instantiation of "void ms_deformable_im2col_cuda(cudaStream_t, const scalar_t *, const int64_t *, const int64_t *, const scalar_t *, const scalar_t *, int, int, int, int, int, int, int, scalar_t *) [with scalar_t=float]" E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu(64): here
25 errors detected in the compilation of "E:/mmseg/ops/src/cuda/ms_deform_attn_cuda.cu". error: command 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin\nvcc.exe' failed with exit code 1
是否是因为windows系统编译不了'MultiScaleDeformableAttention'?
2.后来我在网上查了资料,尝试用mmcv模块自带的from mmcv.ops.multi_scale_deform_attn import ext_module as MSDA代替ops\functions\ms_deform_attn_func.py 中的import MultiScaleDeformableAttention as MSDA,在运行训练脚本时,出现错误:
Traceback (most recent call last):
File "E:/mmsegmentation-0.20.2/train.py", line 217, in
Invoked with: tensor([[[[ 1.0454e+00, 2.3037e+00, 7.8711e-02, ..., -5.2629e-02, -2.0575e+00, 3.8382e-01], [ 4.4317e-01, -1.9688e+00, -7.4302e-01, ..., 1.1384e-01, -2.0322e+00, -9.8970e-01], [-1.4092e+00, 9.1649e-01, 4.5920e-01, ..., 7.8782e-02, 2.3319e-02, 1.0307e+00], ..., [-4.7453e-01, 6.1668e-03, 8.4582e-01, ..., -4.2253e-01, 9.2638e-01, 5.2819e-01], [-5.0433e-02, -1.9279e+00, 8.2762e-02, ..., 5.4080e-01, 5.2500e-01, 2.8486e-01], [-1.0713e+00, -6.2969e-02, 5.8540e-01, ..., 1.4663e+00, -1.4296e+00, -1.2585e+00]],
[[ 1.1206e+00, 2.4906e+00, -3.1013e-02, ..., -3.0609e-02,
-2.2217e+00, 1.4448e-01],
[ 6.1139e-01, -2.0068e+00, -6.6372e-01, ..., 2.2328e-01,
-2.0233e+00, -9.4682e-01],
[-1.2682e+00, 8.6923e-01, 2.0708e-01, ..., -4.7062e-02,
-1.1046e-01, 1.1453e+00],
...,
[-6.3431e-01, 2.1591e-02, 9.5461e-01, ..., -4.7739e-01,
9.2620e-01, 2.3050e-01],
[ 1.9415e-01, -1.9220e+00, 3.1868e-01, ..., 4.6656e-01,
4.0112e-01, 4.0854e-01],
[-1.0031e+00, -1.0892e-01, 6.4965e-01, ..., 1.3789e+00,
-1.4427e+00, -1.0564e+00]],
[[ 9.0757e-01, 2.8214e+00, -1.7081e-01, ..., -1.4807e-01,
-1.9186e+00, 3.8623e-01],
[ 1.4501e-01, -2.3035e+00, -1.0328e+00, ..., 1.5632e-01,
-2.1178e+00, -1.1422e+00],
[-1.2786e+00, 4.0894e-01, 5.7620e-01, ..., 3.7977e-01,
1.3790e-01, 1.2952e+00],
...,
[-7.2484e-01, 3.4538e-01, 5.0384e-01, ..., -3.6696e-01,
8.6514e-01, 1.8609e-01],
[-1.0860e-01, -1.8703e+00, 5.4616e-01, ..., 3.8461e-01,
1.0382e-01, 5.3416e-01],
[-1.3383e+00, 2.1359e-01, 6.7868e-01, ..., 1.4641e+00,
-1.5306e+00, -1.0518e+00]],
...,
[[ 1.0929e+00, 2.7581e+00, -8.2794e-01, ..., -3.3875e-01,
-1.5017e+00, 6.0941e-01],
[ 8.2336e-01, -1.9411e+00, -1.1339e+00, ..., 7.6681e-01,
-2.5302e+00, -9.1900e-01],
[-1.7683e+00, 1.9924e-01, 1.1286e+00, ..., -3.1640e-01,
5.3762e-01, 1.3179e+00],
...,
[-9.3323e-01, -8.5072e-02, 5.8708e-01, ..., 4.3338e-01,
3.7068e-01, 6.0760e-01],
[-2.6206e-01, -1.5947e+00, 7.4005e-01, ..., 3.7379e-01,
3.2166e-01, 4.6654e-01],
[-1.2336e+00, 8.4531e-01, 7.8242e-01, ..., 1.7001e+00,
-5.5930e-01, -1.4831e+00]],
[[ 1.0318e+00, 2.7551e+00, -8.5547e-01, ..., -4.2486e-01,
-1.3242e+00, 6.2919e-01],
[ 8.6186e-01, -1.7788e+00, -1.2767e+00, ..., 8.3591e-01,
-2.5157e+00, -1.0009e+00],
[-1.6732e+00, 2.8615e-01, 1.1921e+00, ..., -4.1708e-01,
3.6207e-01, 1.1855e+00],
...,
[-9.5871e-01, -2.7266e-01, 3.8468e-01, ..., 3.5823e-01,
1.8915e-01, 6.9922e-01],
[-2.5619e-01, -1.7919e+00, 6.1408e-01, ..., 5.4967e-01,
1.8969e-01, 5.0725e-01],
[-1.2818e+00, 1.0523e+00, 8.7130e-01, ..., 1.5627e+00,
-3.2631e-01, -1.5450e+00]],
[[ 1.0850e+00, 2.8336e+00, -8.6054e-01, ..., -4.4391e-01,
-1.1734e+00, 6.0740e-01],
[ 8.3954e-01, -1.7373e+00, -1.3910e+00, ..., 9.6381e-01,
-2.5446e+00, -1.1104e+00],
[-1.6940e+00, 2.4029e-01, 1.0767e+00, ..., -4.1322e-01,
4.2692e-01, 1.1715e+00],
...,
[-9.4724e-01, -2.7286e-01, 4.2115e-01, ..., 3.7616e-01,
2.9657e-01, 7.9576e-01],
[-1.1355e-01, -1.8284e+00, 5.9923e-01, ..., 6.6290e-01,
1.4958e-01, 5.7003e-01],
[-1.2426e+00, 1.0952e+00, 9.8004e-01, ..., 1.6550e+00,
-4.1721e-01, -1.5737e+00]]],
[[[-2.5502e+00, -2.4241e+00, -5.6781e-01, ..., 7.3550e-01,
2.7306e+00, 2.3187e-01],
[-1.4555e+00, 1.6208e+00, -6.5569e-01, ..., -4.5564e-01,
1.2228e-01, -1.2036e-01],
[-1.6754e+00, 1.3842e+00, -1.4357e+00, ..., 4.5124e-01,
-3.4033e-01, 1.1951e+00],
...,
[ 1.1263e+00, 1.0141e+00, -5.4882e-01, ..., -1.3509e+00,
-1.7057e-02, -9.8708e-01],
[ 1.5114e+00, 8.3234e-01, 2.6397e-01, ..., -1.8911e+00,
-9.7779e-01, -2.9526e-01],
[-3.5018e-02, -1.7900e-02, -1.0779e-01, ..., -1.6781e+00,
-1.1053e+00, -1.3945e+00]],
[[-2.4887e+00, -2.5109e+00, -2.3583e-01, ..., 7.7854e-01,
2.5594e+00, 5.0108e-01],
[-1.2788e+00, 1.3141e+00, -4.9137e-01, ..., -5.3539e-01,
-3.3578e-04, 1.2102e-01],
[-1.6249e+00, 1.4436e+00, -1.1583e+00, ..., 5.4817e-01,
-3.2341e-01, 1.0544e+00],
...,
[ 1.4997e+00, 8.0902e-01, -7.4345e-01, ..., -1.4459e+00,
2.4938e-01, -1.0819e+00],
[ 1.3192e+00, 8.8820e-01, 2.6871e-01, ..., -1.6320e+00,
-1.1183e+00, -2.4170e-01],
[-1.2274e-01, -1.8346e-01, -4.6851e-01, ..., -1.9324e+00,
-1.4013e+00, -1.1599e+00]],
[[-2.6008e+00, -2.4953e+00, -3.1804e-01, ..., 6.1436e-01,
2.7267e+00, 2.9878e-01],
[-1.2539e+00, 1.3729e+00, -4.8603e-01, ..., -6.0826e-01,
1.0540e-01, -2.0047e-01],
[-1.6904e+00, 1.1609e+00, -1.2040e+00, ..., 6.5796e-01,
-1.7179e-01, 1.3064e+00],
...,
[ 1.4611e+00, 1.0485e+00, -7.6063e-01, ..., -1.4945e+00,
1.0611e-01, -1.1416e+00],
[ 1.5249e+00, 8.1096e-01, 2.9682e-01, ..., -1.6567e+00,
-1.2007e+00, -2.3147e-01],
[-2.2091e-01, 9.0052e-02, -4.3451e-01, ..., -1.7489e+00,
-1.1571e+00, -9.9585e-01]],
...,
[[-2.6546e+00, -2.2700e+00, -4.4524e-01, ..., 3.6463e-01,
3.0417e+00, 5.6671e-01],
[-1.4011e+00, 1.7222e+00, -5.2218e-01, ..., -5.9744e-01,
1.2535e-01, -2.9419e-01],
[-1.6770e+00, 9.9765e-01, -1.3965e+00, ..., 3.3141e-01,
-4.0974e-02, 1.4140e+00],
...,
[ 1.2155e+00, 1.2499e+00, -6.7844e-01, ..., -1.4157e+00,
4.3620e-03, -8.7917e-01],
[ 1.7722e+00, 6.6028e-01, 1.2669e-01, ..., -1.5781e+00,
-1.2310e+00, -2.3653e-01],
[-1.5084e-01, 2.0007e-01, -1.7730e-01, ..., -1.5123e+00,
-1.2505e+00, -1.3376e+00]],
[[-2.8202e+00, -2.0736e+00, -6.1635e-01, ..., 5.0996e-01,
2.9691e+00, 2.4014e-01],
[-1.5698e+00, 1.5092e+00, -6.3197e-01, ..., -5.5759e-01,
2.0227e-01, 4.7546e-02],
[-1.7259e+00, 9.7447e-01, -1.2060e+00, ..., 4.3823e-01,
-2.9090e-01, 1.2330e+00],
...,
[ 1.0943e+00, 1.3985e+00, -5.4110e-01, ..., -1.2570e+00,
-1.2158e-02, -9.1076e-01],
[ 1.6390e+00, 9.1825e-01, 2.5502e-01, ..., -1.8521e+00,
-1.2553e+00, -2.6770e-01],
[-3.1239e-01, 4.2653e-01, -3.4742e-01, ..., -1.6335e+00,
-9.8791e-01, -1.2960e+00]],
[[-2.5978e+00, -2.1904e+00, -6.3893e-01, ..., 6.7533e-01,
3.0959e+00, 1.9615e-01],
[-1.5242e+00, 1.8759e+00, -5.9848e-01, ..., -2.8841e-01,
4.3010e-01, -3.2935e-01],
[-1.5945e+00, 1.0576e+00, -1.5061e+00, ..., 3.1413e-01,
-2.0028e-01, 1.3712e+00],
...,
[ 1.1991e+00, 1.4466e+00, -6.1770e-01, ..., -1.2508e+00,
2.8221e-01, -9.3919e-01],
[ 1.2299e+00, 8.4930e-01, 1.0351e-01, ..., -1.6968e+00,
-9.2566e-01, -2.2154e-01],
[-1.1786e-01, 9.8225e-02, -1.9706e-01, ..., -1.9332e+00,
-9.1589e-01, -1.3163e+00]]]], device='cuda:0',
grad_fn=<ViewBackward>), tensor([[32, 32]], device='cuda:0'), tensor([0], device='cuda:0'), tensor([[[[[[ 0.0391, 0.0078],
[ 0.0703, 0.0078],
[ 0.1016, 0.0078],
[ 0.1328, 0.0078]]],
[[[ 0.0391, 0.0259],
[ 0.0703, 0.0439],
[ 0.1016, 0.0619],
[ 0.1328, 0.0800]]],
[[[ 0.0259, 0.0391],
[ 0.0439, 0.0703],
[ 0.0619, 0.1016],
[ 0.0800, 0.1328]]],
...,
[[[ 0.0078, -0.0234],
[ 0.0078, -0.0547],
[ 0.0078, -0.0859],
[ 0.0078, -0.1172]]],
[[[ 0.0259, -0.0234],
[ 0.0439, -0.0547],
[ 0.0619, -0.0859],
[ 0.0800, -0.1172]]],
[[[ 0.0391, -0.0102],
[ 0.0703, -0.0283],
[ 0.1016, -0.0463],
[ 0.1328, -0.0644]]]],
[[[[ 0.0547, 0.0078],
[ 0.0859, 0.0078],
[ 0.1172, 0.0078],
[ 0.1484, 0.0078]]],
[[[ 0.0547, 0.0259],
[ 0.0859, 0.0439],
[ 0.1172, 0.0619],
[ 0.1484, 0.0800]]],
[[[ 0.0415, 0.0391],
[ 0.0595, 0.0703],
[ 0.0776, 0.1016],
[ 0.0956, 0.1328]]],
...,
[[[ 0.0234, -0.0234],
[ 0.0234, -0.0547],
[ 0.0234, -0.0859],
[ 0.0234, -0.1172]]],
[[[ 0.0415, -0.0234],
[ 0.0595, -0.0547],
[ 0.0776, -0.0859],
[ 0.0956, -0.1172]]],
[[[ 0.0547, -0.0102],
[ 0.0859, -0.0283],
[ 0.1172, -0.0463],
[ 0.1484, -0.0644]]]],
[[[[ 0.0703, 0.0078],
[ 0.1016, 0.0078],
[ 0.1328, 0.0078],
[ 0.1641, 0.0078]]],
[[[ 0.0703, 0.0259],
[ 0.1016, 0.0439],
[ 0.1328, 0.0619],
[ 0.1641, 0.0800]]],
[[[ 0.0571, 0.0391],
[ 0.0751, 0.0703],
[ 0.0932, 0.1016],
[ 0.1112, 0.1328]]],
...,
[[[ 0.0391, -0.0234],
[ 0.0391, -0.0547],
[ 0.0391, -0.0859],
[ 0.0391, -0.1172]]],
[[[ 0.0571, -0.0234],
[ 0.0751, -0.0547],
[ 0.0932, -0.0859],
[ 0.1112, -0.1172]]],
[[[ 0.0703, -0.0102],
[ 0.1016, -0.0283],
[ 0.1328, -0.0463],
[ 0.1641, -0.0644]]]],
...,
[[[[ 0.8750, 0.9688],
[ 0.9062, 0.9688],
[ 0.9375, 0.9688],
[ 0.9688, 0.9688]]],
[[[ 0.8750, 0.9868],
[ 0.9062, 1.0048],
[ 0.9375, 1.0229],
[ 0.9688, 1.0409]]],
[[[ 0.8618, 1.0000],
[ 0.8798, 1.0312],
[ 0.8979, 1.0625],
[ 0.9159, 1.0938]]],
...,
[[[ 0.8438, 0.9375],
[ 0.8438, 0.9062],
[ 0.8438, 0.8750],
[ 0.8438, 0.8438]]],
[[[ 0.8618, 0.9375],
[ 0.8798, 0.9062],
[ 0.8979, 0.8750],
[ 0.9159, 0.8438]]],
[[[ 0.8750, 0.9507],
[ 0.9062, 0.9327],
[ 0.9375, 0.9146],
[ 0.9688, 0.8966]]]],
[[[[ 0.9375, 0.9688],
[ 0.9688, 0.9688],
[ 1.0000, 0.9688],
[ 1.0312, 0.9688]]],
[[[ 0.9375, 0.9868],
[ 0.9688, 1.0048],
[ 1.0000, 1.0229],
[ 1.0312, 1.0409]]],
[[[ 0.9243, 1.0000],
[ 0.9423, 1.0312],
[ 0.9604, 1.0625],
[ 0.9784, 1.0938]]],
...,
[[[ 0.9062, 0.9375],
[ 0.9062, 0.9062],
[ 0.9062, 0.8750],
[ 0.9062, 0.8438]]],
[[[ 0.9243, 0.9375],
[ 0.9423, 0.9062],
[ 0.9604, 0.8750],
[ 0.9784, 0.8438]]],
[[[ 0.9375, 0.9507],
[ 0.9688, 0.9327],
[ 1.0000, 0.9146],
[ 1.0312, 0.8966]]]],
[[[[ 1.0000, 0.9688],
[ 1.0312, 0.9688],
[ 1.0625, 0.9688],
[ 1.0938, 0.9688]]],
[[[ 1.0000, 0.9868],
[ 1.0312, 1.0048],
[ 1.0625, 1.0229],
[ 1.0938, 1.0409]]],
[[[ 0.9868, 1.0000],
[ 1.0048, 1.0312],
[ 1.0229, 1.0625],
[ 1.0409, 1.0938]]],
...,
[[[ 0.9688, 0.9375],
[ 0.9688, 0.9062],
[ 0.9688, 0.8750],
[ 0.9688, 0.8438]]],
[[[ 0.9868, 0.9375],
[ 1.0048, 0.9062],
[ 1.0229, 0.8750],
[ 1.0409, 0.8438]]],
[[[ 1.0000, 0.9507],
[ 1.0312, 0.9327],
[ 1.0625, 0.9146],
[ 1.0938, 0.8966]]]]],
[[[[[ 0.0391, 0.0078],
[ 0.0703, 0.0078],
[ 0.1016, 0.0078],
[ 0.1328, 0.0078]]],
[[[ 0.0391, 0.0259],
[ 0.0703, 0.0439],
[ 0.1016, 0.0619],
[ 0.1328, 0.0800]]],
[[[ 0.0259, 0.0391],
[ 0.0439, 0.0703],
[ 0.0619, 0.1016],
[ 0.0800, 0.1328]]],
...,
[[[ 0.0078, -0.0234],
[ 0.0078, -0.0547],
[ 0.0078, -0.0859],
[ 0.0078, -0.1172]]],
[[[ 0.0259, -0.0234],
[ 0.0439, -0.0547],
[ 0.0619, -0.0859],
[ 0.0800, -0.1172]]],
[[[ 0.0391, -0.0102],
[ 0.0703, -0.0283],
[ 0.1016, -0.0463],
[ 0.1328, -0.0644]]]],
[[[[ 0.0547, 0.0078],
[ 0.0859, 0.0078],
[ 0.1172, 0.0078],
[ 0.1484, 0.0078]]],
[[[ 0.0547, 0.0259],
[ 0.0859, 0.0439],
[ 0.1172, 0.0619],
[ 0.1484, 0.0800]]],
[[[ 0.0415, 0.0391],
[ 0.0595, 0.0703],
[ 0.0776, 0.1016],
[ 0.0956, 0.1328]]],
...,
[[[ 0.0234, -0.0234],
[ 0.0234, -0.0547],
[ 0.0234, -0.0859],
[ 0.0234, -0.1172]]],
[[[ 0.0415, -0.0234],
[ 0.0595, -0.0547],
[ 0.0776, -0.0859],
[ 0.0956, -0.1172]]],
[[[ 0.0547, -0.0102],
[ 0.0859, -0.0283],
[ 0.1172, -0.0463],
[ 0.1484, -0.0644]]]],
[[[[ 0.0703, 0.0078],
[ 0.1016, 0.0078],
[ 0.1328, 0.0078],
[ 0.1641, 0.0078]]],
[[[ 0.0703, 0.0259],
[ 0.1016, 0.0439],
[ 0.1328, 0.0619],
[ 0.1641, 0.0800]]],
[[[ 0.0571, 0.0391],
[ 0.0751, 0.0703],
[ 0.0932, 0.1016],
[ 0.1112, 0.1328]]],
...,
[[[ 0.0391, -0.0234],
[ 0.0391, -0.0547],
[ 0.0391, -0.0859],
[ 0.0391, -0.1172]]],
[[[ 0.0571, -0.0234],
[ 0.0751, -0.0547],
[ 0.0932, -0.0859],
[ 0.1112, -0.1172]]],
[[[ 0.0703, -0.0102],
[ 0.1016, -0.0283],
[ 0.1328, -0.0463],
[ 0.1641, -0.0644]]]],
...,
[[[[ 0.8750, 0.9688],
[ 0.9062, 0.9688],
[ 0.9375, 0.9688],
[ 0.9688, 0.9688]]],
[[[ 0.8750, 0.9868],
[ 0.9062, 1.0048],
[ 0.9375, 1.0229],
[ 0.9688, 1.0409]]],
[[[ 0.8618, 1.0000],
[ 0.8798, 1.0312],
[ 0.8979, 1.0625],
[ 0.9159, 1.0938]]],
...,
[[[ 0.8438, 0.9375],
[ 0.8438, 0.9062],
[ 0.8438, 0.8750],
[ 0.8438, 0.8438]]],
[[[ 0.8618, 0.9375],
[ 0.8798, 0.9062],
[ 0.8979, 0.8750],
[ 0.9159, 0.8438]]],
[[[ 0.8750, 0.9507],
[ 0.9062, 0.9327],
[ 0.9375, 0.9146],
[ 0.9688, 0.8966]]]],
[[[[ 0.9375, 0.9688],
[ 0.9688, 0.9688],
[ 1.0000, 0.9688],
[ 1.0312, 0.9688]]],
[[[ 0.9375, 0.9868],
[ 0.9688, 1.0048],
[ 1.0000, 1.0229],
[ 1.0312, 1.0409]]],
[[[ 0.9243, 1.0000],
[ 0.9423, 1.0312],
[ 0.9604, 1.0625],
[ 0.9784, 1.0938]]],
...,
[[[ 0.9062, 0.9375],
[ 0.9062, 0.9062],
[ 0.9062, 0.8750],
[ 0.9062, 0.8438]]],
[[[ 0.9243, 0.9375],
[ 0.9423, 0.9062],
[ 0.9604, 0.8750],
[ 0.9784, 0.8438]]],
[[[ 0.9375, 0.9507],
[ 0.9688, 0.9327],
[ 1.0000, 0.9146],
[ 1.0312, 0.8966]]]],
[[[[ 1.0000, 0.9688],
[ 1.0312, 0.9688],
[ 1.0625, 0.9688],
[ 1.0938, 0.9688]]],
[[[ 1.0000, 0.9868],
[ 1.0312, 1.0048],
[ 1.0625, 1.0229],
[ 1.0938, 1.0409]]],
[[[ 0.9868, 1.0000],
[ 1.0048, 1.0312],
[ 1.0229, 1.0625],
[ 1.0409, 1.0938]]],
...,
[[[ 0.9688, 0.9375],
[ 0.9688, 0.9062],
[ 0.9688, 0.8750],
[ 0.9688, 0.8438]]],
[[[ 0.9868, 0.9375],
[ 1.0048, 0.9062],
[ 1.0229, 0.8750],
[ 1.0409, 0.8438]]],
[[[ 1.0000, 0.9507],
[ 1.0312, 0.9327],
[ 1.0625, 0.9146],
[ 1.0938, 0.8966]]]]]], device='cuda:0', grad_fn=<AddBackward0>), tensor([[[[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
...,
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]]],
[[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
...,
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]]],
[[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
...,
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]]],
...,
[[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
...,
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]]],
[[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
...,
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]]],
[[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
...,
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]]]],
[[[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
...,
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]]],
[[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
...,
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]]],
[[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
...,
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]]],
...,
[[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
...,
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]]],
[[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
...,
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]]],
[[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
...,
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]],
[[0.2500, 0.2500, 0.2500, 0.2500]]]]], device='cuda:0',
grad_fn=<ViewBackward>), tensor([[[ 1.4704e-07, 2.0442e-07, -2.3773e-07, ..., -1.2448e-07,
1.5151e-07, 1.1875e-07],
[ 2.7538e-07, 9.7752e-08, -4.0921e-07, ..., -3.8392e-07,
9.4188e-08, 1.8300e-07],
[ 3.1790e-07, 5.3305e-08, -4.0360e-07, ..., -4.8290e-07,
3.0333e-08, 1.9147e-07],
...,
[-3.5902e-06, -2.6383e-06, 1.1648e-06, ..., 2.3170e-06,
-6.1133e-06, -1.5203e-06],
[-4.8687e-06, -2.9234e-06, 2.6226e-06, ..., 2.4621e-06,
-5.5553e-06, -1.1254e-06],
[-4.2980e-06, -2.4518e-06, 3.1164e-06, ..., 3.7315e-06,
-2.3795e-06, 1.8520e-06]],
[[ 9.2248e-08, 7.7889e-08, -4.6520e-08, ..., 4.6973e-08,
-8.7686e-08, 7.9339e-08],
[ 1.6331e-07, 1.5263e-07, -3.9625e-08, ..., 6.1208e-08,
-3.2945e-08, 1.4610e-07],
[ 2.0937e-07, 9.7642e-08, -1.2317e-08, ..., 2.2829e-08,
-2.6568e-08, 1.4188e-07],
...,
[ 1.3758e-06, 1.7925e-06, -8.3217e-06, ..., 1.5411e-06,
2.5807e-06, 2.2825e-06],
[ 1.5971e-06, -1.0762e-06, -6.9236e-06, ..., 1.7843e-06,
1.3317e-07, 2.9574e-06],
[-2.5151e-06, -1.7165e-06, -3.6710e-06, ..., 1.7461e-06,
2.2823e-06, 3.1695e-06]]], device='cuda:0'), 64
Process finished with exit code 1
这个问题困扰我很久了,是否只能在linux系统上进行编译,或者说windows上编译也可有别的解决办法?非常感谢!!!