Error during detection Train!! TypeError: '<' not supported between instances of 'str' and 'int'
File "./train.py", line 194, in
Why is this happening? How can I fix it? Thank you
other config ======================================================================= detection/configs/mask_rcnn_mask_rcnn_deit_adapter_small_fpn_3x_coco.py
Copyright (c) Shanghai AI Lab. All rights reserved.
base = [ '../base/models/mask_rcnn_r50_fpn.py', '../base/datasets/coco_instance.py', '../base/schedules/schedule_3x.py', '../base/default_runtime.py' ]
pretrained = 'https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'
pretrained = None #'pretrained/deit_small_patch16_224-cd65a155.pth' model = dict( backbone=dict( delete=True, type='ViTAdapter', patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, drop_path_rate=0.2, conv_inplane=64, n_points=4, deform_num_heads=6, cffn_ratio=0.25, deform_ratio=1.0, interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]], window_attn=[True, True, False, True, True, False, True, True, False, True, True, False], window_size=[14, 14, None, 14, 14, None, 14, 14, None, 14, 14, None], pretrained=pretrained), neck=dict( type='FPN', in_channels=[384, 384, 384, 384], out_channels=256, num_outs=5))
optimizer
img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
augmentation strategy originates from DETR / Sparse RCNN
train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='AutoAugment', policies=[ [ dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict(type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(1024, 1024), allow_negative_crop=True), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] data = dict(train=dict(pipeline=train_pipeline)) optimizer = dict( delete=True, type='AdamW', lr=0.0001, weight_decay=0.05, paramwise_cfg=dict( custom_keys={ 'level_embed': dict(decay_mult=0.), 'pos_embed': dict(decay_mult=0.), 'norm': dict(decay_mult=0.), 'bias': dict(decay_mult=0.) })) optimizer_config = dict(grad_clip=None) fp16 = dict(loss_scale=dict(init_scale=512)) checkpoint_config = dict( interval=1, max_keep_ckpts=3, save_last=True, )
============================================================== mask_rcnn_r50_fpn.py
model settings
model = dict( type='MaskRCNN', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=32, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=dict( type='FCNMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=32, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5)))
Thanks for your feedback. I have not encountered this problem. I guess it may be due to the environment. Can you give me more information about your environment?