PaperEdge
PaperEdge copied to clipboard
The code and the DIW dataset for "Learning From Documents in the Wild to Improve Document Unwarping" (SIGGRAPH 2022)
PaperEdge
The code and the DIW dataset for "Learning From Documents in the Wild to Improve Document Unwarping" (SIGGRAPH 2022)
[paper]
[supplementary material]
Documents In the Wild (DIW) dataset (2.13GB)
Pretrained models (139.7MB each)
DocUNet benchmark results
docunet_benchmark_paperedge.zip
The last row of adres.txt
is the evaluation results.
The values in the last 3 columns are AD
, MS-SSIM
, and LD
.
Infer one image.
- Download the pretrained model to the
models
directory. - Run the
demo.py
by the following code:$ python demo.py --Enet_ckpt 'models/G_w_checkpoint_13820.pt' \ --Tnet_ckpt 'models/L_w_checkpoint_27640.pt' \ --img_path 'images/1.jpg' \ --out_dir 'output'
- The final result: