A-Hierarchical-Latent-Structure-for-Variational-Conversation-Modeling icon indicating copy to clipboard operation
A-Hierarchical-Latent-Structure-for-Variational-Conversation-Modeling copied to clipboard

Reproduce Results

Open jasonwu0731 opened this issue 5 years ago • 2 comments

Hi there,

Thank you for releasing your code. It helps a lot to understand the whole framework. I'd like to reproduce your results as shown in Table 1 in the paper. Can you provide the hyper-parameters you used to train the model?

When I ran this command

python train.py --data=cornell --model=VHCR --batch_size=40 --sentence_drop=0.25 --kl_annealing_iter=250000 

This is the result I can got after training 30 epochs

python eval.py --model=VHCR --checkpoint=save/cornell/VHCR/2019-08-28_10\:16\:11/30.pkl

Word perplexity upperbound using 100 importance samples: 104.686, kl_div: 1.715

How can I get NLL 4.026 with KL 0.503?

Many thanks. Look forward to hearing from you soon.

jasonwu0731 avatar Sep 02 '19 05:09 jasonwu0731

Hi I got the same result as yours. Did you resolve it?

Thanks !!

CaesarWWK avatar Jan 12 '21 01:01 CaesarWWK

Looking at the details provided here my guess is that the correct commands would be

python train.py --data=cornell --model=VHCR --batch_size=80 --sentence_drop=0.25 --kl_annealing_iter
=15000

python eval.py  --data=cornell --model=VHCR --checkpoint=<path_to_your_checkpoint>

Also, notice that (1) The evaluation script prints out perplexity not NLL, and perplexity = exp(NLL). (2) The train/valid/test split is random.

YovaKem avatar Sep 22 '21 18:09 YovaKem