FFWM
FFWM copied to clipboard
How to use your model to frontalize the pics in mutipie?
I want to frontalize all the faces of mutipie without testing. How should I use your model? 我想使用你的模型把mutipie的人脸做frontalize,我应该怎么使用你的代码?
Hi,
If you just want to get the frontalized faces without calculate the metrics, you can first modify the code of line 50-72
of test.py
as follow:
if opt.datamode == 'multipie':
for i, data in enumerate(dataset_val):
files = data['input_path']
model.set_input(data)
model.test(return_fea=False)
for idx, name in enumerate(files):
prefix = os.path.splitext(name)[0]
visualizer.display_test_results(model.get_current_visuals(), 0, True, prefix, idx=idx)
and meanwhile comment the line 138
of face_dataset.py
:
if self.isval:
self.base_path = join(dataroot, 'test')
self.files = os.listdir(join(self.base_path, 'images'))
# self.gallery_dict = self.get_gallery()
else:
self.base_path = join(dataroot, 'train')
self.lm_dicts = np.load(join(self.base_path, 'landmarks.npy'), allow_pickle=True).item()
self.files = os.listdir(join(self.base_path, 'images'))
pairs = [(file, s2f(file)) for file in self.files]
After downloading the pretrained models and preparing the multipie dataset following the README, you can run
bash test_ffwm.sh
to frontalize the multipie faces.
Hi,
If you just want to get the frontalized faces without calculate the metrics, you can first modify the code of of as follow:
line 50-72``test.py
if opt.datamode == 'multipie': for i, data in enumerate(dataset_val): files = data['input_path'] model.set_input(data) model.test(return_fea=False) for idx, name in enumerate(files): prefix = os.path.splitext(name)[0] visualizer.display_test_results(model.get_current_visuals(), 0, True, prefix, idx=idx)
and meanwhile comment the of :
line 138``face_dataset.py
if self.isval: self.base_path = join(dataroot, 'test') self.files = os.listdir(join(self.base_path, 'images')) # self.gallery_dict = self.get_gallery() else: self.base_path = join(dataroot, 'train') self.lm_dicts = np.load(join(self.base_path, 'landmarks.npy'), allow_pickle=True).item() self.files = os.listdir(join(self.base_path, 'images')) pairs = [(file, s2f(file)) for file in self.files]
After downloading the pretrained models and preparing the multipie dataset following the README, you can run
bash test_ffwm.sh
to frontalize the multipie faces.
Where do I need to modify or add the path to save the face image after frontalization?
The frontalized images are saved by the visualizer.display_test_results(). You can modify the test_dir
attribute in line 76
in Visualizer.py to specific the save path. If default, it will be saved in ./checkpoints/ffwm/test/multipie
.
The frontalized images are saved by the visualizer.display_test_results(). You can modify the
test_dir
attribute inline 76
in Visualizer.py to specific the save path. If default, it will be saved in./checkpoints/ffwm/test/multipie
.
OK, thank you!
The frontalized images are saved by the visualizer.display_test_results(). You can modify the
test_dir
attribute inline 76
in Visualizer.py to specific the save path. If default, it will be saved in./checkpoints/ffwm/test/multipie
.
By the way ,Could I use your model to convert a front face into a frontal face at any angle I set(such as 60° or 90°)?
FFWM can not convert a front face into a face at given angle.