pytorch-cnn-finetune
pytorch-cnn-finetune copied to clipboard
Kernel size issue with "inceptionresnetv2"
When I am trying to run examples/cifar10.py with Inception-Resnet-v2, i am getting the following error:
RuntimeError: Calculated padded input size per channel: (1 x 1). Kernel size: (3 x 3). Kernel size can't be greater than actual input size
Tried to run this:
import argparse
import torch
import torchvision
import torchvision.transforms as transforms
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
from cnn_finetune import make_model
parser = argparse.ArgumentParser(description='Inception-Resnet-v2-TRAIN')
parser.add_argument('--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 32)')
parser.add_argument('--test-batch-size', type=int, default=64, metavar='N',
help='input batch size for testing (default: 64)')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--save-model', type=int, default=10, metavar='N',
help='number of epochs after which the model will be saved (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--model-name', type=str, default='resnet50', metavar='M',
help='model name (default: resnet50)')
parser.add_argument('--dropout-p', type=float, default=0.2, metavar='D',
help='Dropout probability (default: 0.2)')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')
def train(model, epoch, optimizer, train_loader, criterion=nn.CrossEntropyLoss()):
total_loss = 0
total_size = 0
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
total_loss += loss.item()
total_size += data.size(0)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tAverage loss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), total_loss / total_size))
def main():
model_name = args.model_name
classes = (
'plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck'
)
model = make_model(
model_name,
pretrained=True,
num_classes=len(classes),
pool=nn.AdaptiveMaxPool2d(1),
dropout_p=args.dropout_p
)
model = model.to(device)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=model.original_model_info.mean,
std=model.original_model_info.std),
])
train_set = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform
)
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True, num_workers=2
)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
# Use exponential decay for fine-tuning optimizer
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.975)
# Train
for epoch in range(1, args.epochs + 1):
train(model, epoch, optimizer, train_loader)
scheduler.step(epoch)
if epoch % args.save_model == 0:
torch.save(model.state_dict(), './checkpoint/' + 'ckpt_' + str(epoch) + '.pth')
if __name__ == '__main__':
main()