wavelet-denoising
wavelet-denoising copied to clipboard
Some algorithms of wavelet denoising based on PyWavelets.
wavelet-denoising
在信号处理中,小波去噪是很常见的方式,在此基于Python3、PyWavelets实现了一些小波去噪的方法以便直接使用
- 阈值收缩去噪法、小波平移不变消噪,同时实现了获取近似基线的函数;
- 可选择阈值函数('soft', 'hard', 'garotte', 'greater', 'less')、阈值选择方法('visushrink', 'sureshrink', 'heursure', 'minmax'),以及自行选择PyWavelets中的小波和分解层数;
- 输入序列可为list或numpy.ndarray
Implement some wavelets denoising methods based on Python3 and PyWavelets package
- Including Threshold shrinkage denoising(tsd), Wavelet translation invariant denoising(ti) and method to get approximate baseline(get_baseline)
- Support 'soft', 'hard', 'garotte', 'greater', 'less' modes and 'visushrink', 'sureshrink', 'heursure', 'minmax' methods for choosing. Besides, wavelets name and deconstruct level
- Support list and numpy.ndarray as input
Install wtdenoise
git clone https://github.com/courageface/wavelet-denoising.git
cd wavelet-denoising
python setup.py install