OptimalControl.jl
OptimalControl.jl copied to clipboard
[General] Code Tmax sun occult mission
The problem is formulated in terms of "what is the minimum amount of thrusters needed for relations these two points fixed in time and state (position & velocity), mass is free" @jbcaillau
using SPICE
using OptimalControl
using NLPModelsIpopt
using JLD2
using OrdinaryDiffEq
using DataInterpolations
using CSV
using JLD2
using Plots
using Plots.PlotMeasures # for leftmargin, bottommargin
using LaTeXStrings
# SPICE Downloads
using Downloads: download
# SPICE files
const LSK = "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/naif0012.tls"
const SPK = "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de440.bsp"
const PCK = "https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/pck00010.tpc"
# Download kernels
download(LSK, "naif0012.tls")
download(SPK, "de440.bsp")
download(PCK, "pck00010.tpc")
furnsh("naif0012.tls") # Leap seconds kernel
furnsh("de430.bsp")
furnsh("pck00010.tpc") # PCK kernel for planetary constants
# Astrodynamical parameters
G = 6.6743e-11 / 1000^3 # km^3 kg^-1 s^-2
M_moon = 7.346e22 # kg
M_earth = 5.972168e24 # kg
M_sun = 1.989e30 # kg
AU = 1.495978707e11 / 1e3 # km
LU = 384399 # km
TU = sqrt(LU^3 / G / (M_moon + M_earth))
MUnit = M_moon + M_earth
mu_Earth = 3.9860044188e14 / 1000^3 / LU^3 * TU^2
mu_Moon = 4.90486959e12 / 1000^3 / LU^3 * TU^2
mu_Sun = 1.327124400189e20 / 1000^3 / LU^3 * TU^2
mass_moon = M_moon / MUnit
mass_earth = M_earth / MUnit
mass_sun = M_sun / MUnit
# Spacecraft parameters
g0 = 9.80665 / 1000 / LU * TU^2
Isp = 1660 / TU
wet_mass = 400 / MUnit
fuel_mass = 90 / MUnit
dry_mass = wet_mass - fuel_mass
Tmax = 0.090 / 1000 / MUnit / LU * TU^2 #thrust force in N
Q = Tmax / Isp / g0
mass_scaling_factor = dry_mass + fuel_mass
# COASTING parameter
deltat = 2 * 24 * 3600 / TU
# Plot functions
function plot_trajNV_multiarc_multidyn_withcoasting_1arc(sol, nb_arcs, tvec, moon_arcs, uncontrolled_arcs)
sol_time = sol.time_grid.value
Nstate = length(sol.state.value(sol.time_grid.value[1]))
Nsol = length(sol_time)
sol_state = zeros(Nstate * nb_arcs, Nsol)
sol_control = zeros(3 * (nb_arcs - length(uncontrolled_arcs)), Nsol)
# sol_control = zeros(3 * nb_arcs, Nsol)
# k = 1
for i in range(1, Nsol)
sol_state[:, i] = sol.state.value(sol.time_grid.value[i])
sol_control[:, i] = sol.control.value(sol.time_grid.value[i])
# if i ∉ uncontrolled_arcs
# k += 1
# end
end
for m in moon_arcs
for i in range(1, Nsol)
Nbegin = 1 + Nstate * (m - 1)
Nend = 7 + Nstate * (m - 1)
sol_state[Nbegin : Nend, i] = moon2emb(phi(sol_time[i], tvec[m], tvec[m+1]), sol_state[Nbegin : Nend, i])
end
end
x_vals_opti = zeros(nb_arcs, Nsol)
y_vals_opti = zeros(nb_arcs, Nsol)
z_vals_opti = zeros(nb_arcs, Nsol)
vx_vals_opti = zeros(nb_arcs, Nsol)
vy_vals_opti = zeros(nb_arcs, Nsol)
vz_vals_opti = zeros(nb_arcs, Nsol)
m_vals_opti = zeros(nb_arcs, Nsol)
ux_vals_opti = zeros(nb_arcs, Nsol)
uy_vals_opti = zeros(nb_arcs, Nsol)
uz_vals_opti = zeros(nb_arcs, Nsol)
u_norm = zeros(nb_arcs, Nsol)
k = 1
for i in range(1, nb_arcs)
x_vals_opti[i, :] = sol_state[1 + Nstate * (i - 1), :]
y_vals_opti[i, :] = sol_state[2 + Nstate * (i - 1), :]
z_vals_opti[i, :] = sol_state[3 + Nstate * (i - 1), :]
vx_vals_opti[i, :] = sol_state[4 + Nstate * (i - 1), :]
vy_vals_opti[i, :] = sol_state[5 + Nstate * (i - 1), :]
vz_vals_opti[i, :] = sol_state[6 + Nstate * (i - 1), :]
m_vals_opti[i, :] = sol_state[7 + Nstate * (i - 1), :]
if i ∉ uncontrolled_arcs
ux_vals_opti[i, :] = sol_control[1 + 3 * (k - 1), :]
uy_vals_opti[i, :] = sol_control[2 + 3 * (k - 1), :]
uz_vals_opti[i, :] = sol_control[3 + 3 * (k - 1), :]
u_norm[i, :] = (ux_vals_opti[i, :].^2 + uy_vals_opti[i, :].^2 + uz_vals_opti[i, :].^2).^(1/2)
k += 1
end
end
sol_time_plot = LinRange(tvec[1], tvec[end], N)
x_moon_pos = [x_moon(t) for t in sol_time_plot]
y_moon_pos = [y_moon(t) for t in sol_time_plot]
z_moon_pos = [z_moon(t) for t in sol_time_plot]
x_earth_pos = [x_earth(t) for t in sol_time_plot]
y_earth_pos = [y_earth(t) for t in sol_time_plot]
z_earth_pos = [z_earth(t) for t in sol_time_plot]
p = plot(x_moon_pos, y_moon_pos, z_moon_pos, label = "moon orbit")
plot!(x_earth_pos, y_earth_pos, z_earth_pos, label = "earth orbit")
scatter!([x_vals_opti[1, 1]], [y_vals_opti[1, 1]], [z_vals_opti[1, 1]], label = "previous occultation", color = :blue)
labels = ["next occultation"]
for i in range(1, nb_arcs)
rand_color = RGB(rand(), rand(), rand())
plot!(x_vals_opti[i, :], y_vals_opti[i, :], z_vals_opti[i, :], size=(600, 600), camera = (10,30), xlabel="x", ylabel="y", label = false, zlabel="z", linewidth = 2, color = "black", legend =:topleft)
scatter!([x_vals_opti[i, end]], [y_vals_opti[i, end]], [z_vals_opti[i, end]], label = labels[i], color = :red)
arrow_factor = 1e-1
inds = findall(u_norm[i, :] .> 0.001)[1:2:end]
quiver!(x_vals_opti[i, inds], y_vals_opti[i, inds], z_vals_opti[i, inds], quiver=(ux_vals_opti[i, inds] * arrow_factor, uy_vals_opti[i, inds] * arrow_factor, uz_vals_opti[i, inds] * arrow_factor), label="thrust directions", arrow=true, color = "red")
# if i ∉ uncontrolled_arcs
# arrow_factor = 1e-1
# inds = findall(u_norm[k, :] .> 0.01)[1:2:end]
# quiver!(x_vals_opti[i, inds], y_vals_opti[i, inds], z_vals_opti[i, inds], quiver=(ux_vals_opti[k, inds] * arrow_factor, uy_vals_opti[k, inds] * arrow_factor, uz_vals_opti[k, inds] * arrow_factor), label="thrust directions", arrow=true, color = "red")
# k += 1
# end
end
xlims!(-2, 2)
ylims!(-2, 2)
zlims!(-2, 2)
display(p)
end
function plot_trajNV_multiarc_multidyn_synodic_1arc(sol, nb_arcs, tvec, moon_arcs)
sol_time = sol.time_grid.value
Nstate = length(sol.state.value(sol.time_grid.value[1]))
Nsol = length(sol_time)
sol_state = zeros(Nstate * nb_arcs, Nsol)
for i in range(1, Nsol)
sol_state[:, i] = sol.state.value(sol.time_grid.value[i])
end
for m in moon_arcs
for i in range(1, Nsol)
Nbegin = 1 + Nstate * (m - 1)
Nend = Nstate + Nstate * (m - 1)
sol_state[Nbegin : Nend, i] = moon2emb(sol_time[i], sol_state[Nbegin : Nend, i])
end
end
x_vals_opti = zeros(Nsol)
y_vals_opti = zeros(Nsol)
z_vals_opti = zeros(Nsol)
vx_vals_opti = zeros(Nsol)
vy_vals_opti = zeros(Nsol)
vz_vals_opti = zeros(Nsol)
m_vals_opti = zeros(Nsol)
for i in range(1, nb_arcs)
x_vals_opti = sol_state[1 , :]
y_vals_opti = sol_state[2 , :]
z_vals_opti = sol_state[3 , :]
vx_vals_opti = sol_state[4 , :]
vy_vals_opti = sol_state[5 , :]
vz_vals_opti = sol_state[6 , :]
m_vals_opti = sol_state[7 , :]
end
x_syn = zeros( Nsol)
y_syn = zeros(Nsol)
z_syn = zeros( Nsol)
for ii = 1:Nsol
x_sol_syn = ECLIPJ2000toSynodic(sol_time[ii] * TU,
sol_state[1 : 3, ii])
x_syn[ii] = x_sol_syn[1]
y_syn[ii] = x_sol_syn[2]
z_syn[ii] = x_sol_syn[3]
end
p = plot(x_syn, y_syn, z_syn, legend = false, linewidth = 2, color = :black)
scatter!([x_syn[end]], [y_syn[end]], [z_syn[end]], color = :red, xlabel = "x", ylabel = "y", zlabel = "z")
scatter!([x_syn[1]], [y_syn[1]], [z_syn[1]], color = :red, xlabel = "x", ylabel = "y", zlabel = "z")
scatter!([norm([x_moon(t0), y_moon(t0), z_moon(t0)])], [0], [0], color = :grey, label = "moon", markersize=7)
scatter!([norm([x_earth(t0), y_earth(t0), z_earth(t0)])], [0], [0], color = :blue, label = "earth", markersize=10)
xlims!(-2, 2)
ylims!(-2, 2)
zlims!(-2, 2)
display(p)
end
function ECLIPJ2000toSynodic(et, x)
xm = spkezr("MOON", et, "ECLIPJ2000", "NONE", "EARTH")
r = xm[1][1:3]
v = xm[1][4:6]
normr = norm(r)
h = cross(r, v)
normh = norm(h)
er = r/normr
eh = h/normh
et = cross(eh, er)/norm(cross(eh, er))
IS = [er[1] er[2] er[3];
et[1] et[2] et[3];
eh[1] eh[2] eh[3]]
xs = IS * x[1:3]
return xs
end
# Dynamics functions
function propagate!(du, u, p, t)
r = u[1:3]
v = u[4:6]
m = u[7] * mass_scaling_factor
x_e = [x_earth(t), y_earth(t), z_earth(t)]
x_m = [x_moon(t), y_moon(t), z_moon(t)]
x_s = [x_sun(t), y_sun(t), z_sun(t)]
normrE = sqrt(sum((x_e - r).^2))
normrM = sqrt(sum((x_m - r).^2))
normrS = sqrt(sum((x_s - r).^2))
normrSE = sqrt(sum((x_e - x_s).^2))
normrMS = sqrt(sum((x_m - x_s).^2))
dv = mu_Earth / normrE^3 * (x_e - r) + mu_Moon / normrM^3 * (x_m - r) + mu_Sun / normrS^3 * (x_s - r) - (1 / (mass_earth + mass_moon)) * ( x_s * (mu_Sun * mass_earth / normrSE^3 + mu_Moon * mass_sun / normrMS^3) - x_m * (mu_Moon * mass_sun / normrMS^3) - x_e * (mu_Sun * mass_earth / normrSE^3))
dvu = Tmax * p / m
dm = - Q * sqrt(sum(p.^2)) / mass_scaling_factor
du[1:3] = v
du[4:6] = dv + dvu
du[7] = dm
end
function F0(t, x, u)
# Earth & Moon & Sun gravity
r = x[1:3]
v = x[4:6]
m = x[7] * mass_scaling_factor
N_th = x[8]
x_e = [x_earth(t), y_earth(t), z_earth(t)]
x_m = [x_moon(t), y_moon(t), z_moon(t)]
x_s = [x_sun(t), y_sun(t), z_sun(t)]
normrE = sqrt(sum((x_e - r).^2))
normrM = sqrt(sum((x_m - r).^2))
normrS = sqrt(sum((x_s - r).^2))
normrSE = sqrt(sum((x_e - x_s).^2))
normrMS = sqrt(sum((x_m - x_s).^2))
dv = mu_Earth / normrE^3 * (x_e - r) + mu_Moon / normrM^3 * (x_m - r) + mu_Sun / normrS^3 * (x_s - r) - (1 / (mass_earth + mass_moon)) * ( x_s * (mu_Sun * mass_earth / normrSE^3 + mu_Moon * mass_sun / normrMS^3) - x_m * (mu_Moon * mass_sun / normrMS^3) - x_e * (mu_Sun * mass_earth / normrSE^3))
dvu = N_th * Tmax * u / m
dm = - N_th * Q * sqrt(sum(u.^2)) / mass_scaling_factor
dx = [v; dv + dvu; dm; 0]
return dx
end
function Fu(t, x, u)
# Earth & Moon & Sun gravity
r = x[1:3]
v = x[4:6]
m = x[7] * mass_scaling_factor
N_th = x[8]
x_e = [x_earth(t), y_earth(t), z_earth(t)]
x_m = [x_moon(t), y_moon(t), z_moon(t)]
x_s = [x_sun(t), y_sun(t), z_sun(t)]
normrE = sqrt(sum((x_e - r).^2))
normrM = sqrt(sum((x_m - r).^2))
normrS = sqrt(sum((x_s - r).^2))
normrSE = sqrt(sum((x_e - x_s).^2))
normrMS = sqrt(sum((x_m - x_s).^2))
dvg = mu_Earth / normrE^3 * (x_e - r) + mu_Moon / normrM^3 * (x_m - r) + mu_Sun / normrS^3 * (x_s - r) - (1 / (mass_earth + mass_moon)) * ( x_s * (mu_Sun * mass_earth / normrSE^3 + mu_Moon * mass_sun / normrMS^3) - x_m * (mu_Moon * mass_sun / normrMS^3) - x_e * (mu_Sun * mass_earth / normrSE^3))
dvu = N_th * Tmax * u / m
dv = dvg + dvu
dm = - N_th * Q * sqrt(sum(u.^2)) / mass_scaling_factor
dx = [ v; dv; dm; 0 ]
return dx
end
t0_J200 = 1.107747244e9
tf_J200 = 1.110817407e9
N = 50000
t_values = LinRange(t0_J200, tf_J200, N-3)
t_values = vcat(-5e9, 0.0, collect(t_values), tf_J200 * 5)
states_moon = zeros(6, N)
states_earth = zeros(6, N)
states_sun = zeros(6, N)
states_moon_wrt_sun = zeros(6, N)
states_earth_wrt_moon = zeros(6, N)
t0 = t0_J200 / TU
tf = tf_J200 / TU
for i = 1:N
states_moon[:,i], _ = spkezr("MOON", t_values[i], "ECLIPJ2000", "NONE", "EARTH MOON BARYCENTER")
states_earth[:,i], _ = spkezr("EARTH", t_values[i], "ECLIPJ2000", "NONE", "EARTH MOON BARYCENTER")
states_sun[:,i], _ = spkezr("SUN", t_values[i], "ECLIPJ2000", "NONE", "EARTH MOON BARYCENTER")
states_moon_wrt_sun[:,i], _ = spkezr("MOON", t_values[i], "ECLIPJ2000", "NONE", "SUN")
states_earth_wrt_moon[:,i], _ = spkezr("EARTH", t_values[i], "ECLIPJ2000", "NONE", "MOON")
end
x_moon = DataInterpolations.LinearInterpolation(states_moon[1,:] / LU, t_values / TU)
y_moon = DataInterpolations.LinearInterpolation(states_moon[2,:] / LU, t_values / TU)
z_moon = DataInterpolations.LinearInterpolation(states_moon[3,:] / LU, t_values / TU)
vx_moon = DataInterpolations.LinearInterpolation(states_moon[4,:] / LU * TU, t_values / TU)
vy_moon = DataInterpolations.LinearInterpolation(states_moon[5,:] / LU * TU, t_values / TU)
vz_moon = DataInterpolations.LinearInterpolation(states_moon[6,:] / LU * TU, t_values / TU)
x_earth = DataInterpolations.LinearInterpolation(states_earth[1,:] / LU, t_values / TU)
y_earth = DataInterpolations.LinearInterpolation(states_earth[2,:] / LU, t_values / TU)
z_earth = DataInterpolations.LinearInterpolation(states_earth[3,:] / LU, t_values / TU)
vx_earth = DataInterpolations.LinearInterpolation(states_earth[4,:] / LU * TU, t_values / TU)
vy_earth = DataInterpolations.LinearInterpolation(states_earth[5,:] / LU * TU, t_values / TU)
vz_earth = DataInterpolations.LinearInterpolation(states_earth[6,:] / LU * TU, t_values / TU)
x_sun = DataInterpolations.LinearInterpolation(states_sun[1,:] / LU, t_values / TU)
y_sun = DataInterpolations.LinearInterpolation(states_sun[2,:] / LU, t_values / TU)
z_sun = DataInterpolations.LinearInterpolation(states_sun[3,:] / LU, t_values / TU)
x_earth_wrt_moon = DataInterpolations.LinearInterpolation(states_earth_wrt_moon[1,:] / LU, t_values / TU)
y_earth_wrt_moon = DataInterpolations.LinearInterpolation(states_earth_wrt_moon[2,:] / LU, t_values / TU)
z_earth_wrt_moon = DataInterpolations.LinearInterpolation(states_earth_wrt_moon[3,:] / LU, t_values / TU)
x_moon_wrt_sun = DataInterpolations.LinearInterpolation(states_moon_wrt_sun[1,:] / LU, t_values / TU)
y_moon_wrt_sun = DataInterpolations.LinearInterpolation(states_moon_wrt_sun[2,:] / LU, t_values / TU)
z_moon_wrt_sun = DataInterpolations.LinearInterpolation(states_moon_wrt_sun[3,:] / LU, t_values / TU)
t1_J200 = 1.10829103e9
t1_moon, _ = spkezr("MOON", t1_J200, "ECLIPJ2000", "NONE", "EARTH MOON BARYCENTER")
t1 = t1_J200 / TU
occult1 = zeros(6)
occult1_ECI = [-297664.1158..., 212871.4885..., -76.96308643..., 1.453863208..., -1.136754567..., -0.032783807...]
occult1[1:3] = (occult1_ECI[1:3] + t1_moon[1:3]) / LU
occult1[4:6] = (occult1_ECI[4:6] + t1_moon[4:6]) / LU * TU
t6_J200 = 1.110817407e9
t6_moon, _ = spkezr("MOON", t6_J200, "ECLIPJ2000", "NONE", "EARTH MOON BARYCENTER")
t6 = t6_J200 / TU
occult6 = zeros(6)
occult6_ECI = [-365732.5404..., 39738.61049..., -83.77279923..., 1.854101596..., -0.310457164..., 0.010142901...]
occult6[1:3] = (occult6_ECI[1:3] + t6_moon[1:3]) / LU
occult6[4:6] = (occult6_ECI[4:6] + t6_moon[4:6]) / LU * TU
@def ocp begin
t ∈ [ t1, t6 ], time
x ∈ R^8, state
u ∈ R³, control
thrust = x[8]
mass = x[7]
-10 ≤ x₁(t) ≤ 10
-10 ≤ x₂(t) ≤ 10
-10 ≤ x₃(t) ≤ 10
-10 ≤ x₄(t) ≤ 10
-10 ≤ x₅(t) ≤ 10
-10 ≤ x₆(t) ≤ 10
0 ≤ x₇(t) ≤ 1 # careful here ! dry mass > 0 && dry_mass ≤ x₇(t) ≤ dry_mass + fuel_mass
1e-5 ≤ x₈(t) ≤ 50
0 ≤ sum(u(t).^2) ≤ 1
x[1:6](t1) == occult1
x₇(t1) == mass_init
x[1:6](t6) == occult6
ẋ(t) == Fu(t, x(t), u(t))
x₈(t6) → min
end
# Works but is slower:
# sol = solve(ocp, grid_size = 100, max_iter = 100, tol = 1e-6, acceptable_tol = 1e-5, disc_method=:gauss_legendre_2)
# Creating initial guess
ppr = 1e-16 * ones(3)
x0 = [occult1..., 1..., 1..., ]
tspan = (t1, t6)
time_points = LinRange(t1, t6, 500)
prob = ODEProblem(propagate!, x0, tspan, ppr)
solpr = solve(prob, Tsit5(), saveat=time_points)
Nsolu = length(solpr.u)
plot([solpr.u[i][1] for i in range(1, Nsolu)], [solpr.u[i][2] for i in range(1, Nsolu)], [solpr.u[i][3] for i in range(1, Nsolu)])
xlims!(-2, 2)
ylims!(-2, 2)
zlims!(-2, 2)
sol = solve(ocp,
init = (time=solpr.t, state=solpr.u, control=ppr),
grid_size = 100, max_iter = 1000, tol = 1e-6, acceptable_tol = 1e-5,
disc_method=:gauss_legendre_2)
initial_guess = sol
sol = solve(ocp, init = initial_guess,
grid_size = 150, max_iter = 1000, tol = 1e-6, disc_method=:gauss_legendre_2)
time_intervals = [t1, t6]
plot(sol,size = (600,1500))
control_matrix = zeros(3, length(sol.time_grid.value))
for i in range(1, length(sol.time_grid.value))
control_matrix[:,i] = sol.control.value(sol.time_grid.value[i])
end
control_norm = [norm(col) for col in eachcol(control_matrix)]
plot(sol.time_grid.value, control_norm, linewidth = 2, label = false)
ylims!(0,1)
moon_arcs = []
uncontrolled_arcs = []
plot_trajNV_multiarc_multidyn_withcoasting_1arc(sol, 1, time_intervals, moon_arcs, uncontrolled_arcs)
plot_trajNV_multiarc_multidyn_synodic_1arc(sol, 1, time_intervals, moon_arcs)
nice @alesiagr can you please
- confirm that the 9 functions
x/y/z_earth/moon/sunare the only external functions (that is, not basic Julia functions known to and overloaded by ExaModels)? - provide a simple way (directly from DataInterpolations.jl?) to retrieve their first and second order derivatives? (see https://exanauts.github.io/ExaModels.jl/stable/core/#ExaModels.@register_univariate-Tuple)
given the complexity of Fu, see also https://github.com/control-toolbox/OptimalControl.jl/issues/620
@jbcaillau
- yes, these are the only external functions
- DataInterpolations.jl is compatible with autodiff. Can it be retrieved via ForwardDiff or something like that ?