ComfyUI icon indicating copy to clipboard operation
ComfyUI copied to clipboard

Fails to correctly load almost every form of lycoris, lyco, leco, and loha.

Open AbstractEyes opened this issue 6 months ago • 2 comments

Custom Node Testing

Expected Behavior

The implemented weighting schema seems to imply that it's trying, however in practice the models are simply overlooked and fully default to LORA state - which the majority of lycoris are multiplicative and not additive.

I dunno who thought it was a good idea to check layers, but it's not a good idea to check layers when these systems all start using similar optimization techniques with the same layer names. These aren't actually LORA when they have additional steps, yet they are identified as lora.

sd-scripts trained models have a 'metadata' dictionary with an 'ss_training_algo' - this lists the correct algorithm used to train the lycoris.

This when paired with model merging, you have a massive problem with fidelity loss in the underlying mechanics of models.

Actual Behavior

Checks layers, checks a few hard-coded layer sets for some locon weights, and then defaults EVERYTHING into the umbrella of the normal lora.

This is a heavy failpoint. You cannot simply group everything that requires very specific forwarding and weight modification logic into an umbrella of ADD THIS HERE. It fails. Every single time it fails.

Merging this squashes the internals into a paste without purpose and the entire overarching structure of the incorrectly loaded lycoris is lost.

Steps to Reproduce

Load a damn lycoris.

Debug Logs

"""
    This file is part of ComfyUI.
    Copyright (C) 2024 Comfy

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""

from __future__ import annotations
import comfy.utils
import comfy.model_management
import comfy.model_base
import comfy.weight_adapter as weight_adapter
import logging
import torch

logger = logging.getLogger(__name__)

LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}


def load_lora(lora, to_load, log_missing=True):
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

        dora_scale_name = "{}.dora_scale".format(x)
        dora_scale = None
        if dora_scale_name in lora.keys():
            dora_scale = lora[dora_scale_name]
            loaded_keys.add(dora_scale_name)

        # --- NEW: hard adapter override ---
        adapter_override = None
        if hasattr(lora, 'metadata') and isinstance(lora.metadata, dict):
            algo = lora.metadata.get("ss_network_args", "")
            if isinstance(algo, str) and algo.strip().startswith("{"):
                import json
                try:
                    netargs = json.loads(algo)
                    algo_name = netargs.get("algo", "").strip().lower()
                    adapter_override = next((a for a in weight_adapter.adapters if a.name == algo_name), None)
                except Exception as e:
                    logging.warning(f"[load_lora] Failed to parse ss_network_args: {e}")

        if adapter_override:
            adapter = adapter_override.load(x, lora, alpha, dora_scale, loaded_keys)
            if adapter is not None:
                patch_dict[to_load[x]] = adapter
                loaded_keys.update(adapter.loaded_keys)
        else:
            # fallback to default loop
            for adapter_cls in weight_adapter.adapters:
                adapter = adapter_cls.load(x, lora, alpha, dora_scale, loaded_keys)
                if adapter is not None:
                    patch_dict[to_load[x]] = adapter
                    loaded_keys.update(adapter.loaded_keys)
                    break

        w_norm_name = "{}.w_norm".format(x)
        b_norm_name = "{}.b_norm".format(x)
        w_norm = lora.get(w_norm_name, None)
        b_norm = lora.get(b_norm_name, None)

        if w_norm is not None:
            loaded_keys.add(w_norm_name)
            patch_dict[to_load[x]] = ("diff", (w_norm,))
            if b_norm is not None:
                loaded_keys.add(b_norm_name)
                patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,))

        diff_name = "{}.diff".format(x)
        diff_weight = lora.get(diff_name, None)
        if diff_weight is not None:
            patch_dict[to_load[x]] = ("diff", (diff_weight,))
            loaded_keys.add(diff_name)

        diff_bias_name = "{}.diff_b".format(x)
        diff_bias = lora.get(diff_bias_name, None)
        if diff_bias is not None:
            patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,))
            loaded_keys.add(diff_bias_name)

        set_weight_name = "{}.set_weight".format(x)
        set_weight = lora.get(set_weight_name, None)
        if set_weight is not None:
            patch_dict[to_load[x]] = ("set", (set_weight,))
            loaded_keys.add(set_weight_name)

    if log_missing:
        for x in lora.keys():
            if x not in loaded_keys:
                logging.warning("lora key not loaded: {}".format(x))

    return patch_dict

def model_lora_keys_clip(model, key_map={}):
    sdk = model.state_dict().keys()
    for k in sdk:
        if k.endswith(".weight"):
            key_map["text_encoders.{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names

    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
    clip_l_present = False
    clip_g_present = False
    for b in range(32): #TODO: clean up
        for c in LORA_CLIP_MAP:
            k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
                lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                key_map[lora_key] = k

            k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                key_map[lora_key] = k
                clip_l_present = True
                lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                key_map[lora_key] = k

            k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                clip_g_present = True
                if clip_l_present:
                    lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                    key_map[lora_key] = k
                    lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                    key_map[lora_key] = k
                else:
                    lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
                    key_map[lora_key] = k
                    lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                    key_map[lora_key] = k
                    lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config
                    key_map[lora_key] = k

    for k in sdk:
        if k.endswith(".weight"):
            if k.startswith("t5xxl.transformer."):#OneTrainer SD3 and Flux lora
                l_key = k[len("t5xxl.transformer."):-len(".weight")]
                t5_index = 1
                if clip_g_present:
                    t5_index += 1
                if clip_l_present:
                    t5_index += 1
                    if t5_index == 2:
                        key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k #OneTrainer Flux
                        t5_index += 1

                key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k
            elif k.startswith("hydit_clip.transformer.bert."): #HunyuanDiT Lora
                l_key = k[len("hydit_clip.transformer.bert."):-len(".weight")]
                lora_key = "lora_te1_{}".format(l_key.replace(".", "_"))
                key_map[lora_key] = k


    k = "clip_g.transformer.text_projection.weight"
    if k in sdk:
        key_map["lora_prior_te_text_projection"] = k #cascade lora?
        # key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too
        key_map["lora_te2_text_projection"] = k #OneTrainer SD3 lora

    k = "clip_l.transformer.text_projection.weight"
    if k in sdk:
        key_map["lora_te1_text_projection"] = k #OneTrainer SD3 lora, not necessary but omits warning

    return key_map

def model_lora_keys_unet(model, key_map={}):
    sd = model.state_dict()
    sdk = sd.keys()

    for k in sdk:
        if k.startswith("diffusion_model."):
            if k.endswith(".weight"):
                key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
                key_map["lora_unet_{}".format(key_lora)] = k
                key_map["{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names
            else:
                key_map["{}".format(k)] = k #generic lora format for not .weight without any weird key names

    diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
    for k in diffusers_keys:
        if k.endswith(".weight"):
            unet_key = "diffusion_model.{}".format(diffusers_keys[k])
            key_lora = k[:-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = unet_key
            key_map["lycoris_{}".format(key_lora)] = unet_key #simpletuner lycoris format

            diffusers_lora_prefix = ["", "unet."]
            for p in diffusers_lora_prefix:
                diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
                if diffusers_lora_key.endswith(".to_out.0"):
                    diffusers_lora_key = diffusers_lora_key[:-2]
                key_map[diffusers_lora_key] = unet_key

    if isinstance(model, comfy.model_base.StableCascade_C):
        for k in sdk:
            if k.startswith("diffusion_model."):
                if k.endswith(".weight"):
                    key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
                    key_map["lora_prior_unet_{}".format(key_lora)] = k

    if isinstance(model, comfy.model_base.SD3): #Diffusers lora SD3
        diffusers_keys = comfy.utils.mmdit_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
        for k in diffusers_keys:
            if k.endswith(".weight"):
                to = diffusers_keys[k]
                key_lora = "transformer.{}".format(k[:-len(".weight")]) #regular diffusers sd3 lora format
                key_map[key_lora] = to

                key_lora = "base_model.model.{}".format(k[:-len(".weight")]) #format for flash-sd3 lora and others?
                key_map[key_lora] = to

                key_lora = "lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_")) #OneTrainer lora
                key_map[key_lora] = to

                key_lora = "lycoris_{}".format(k[:-len(".weight")].replace(".", "_")) #simpletuner lycoris format
                key_map[key_lora] = to

    if isinstance(model, comfy.model_base.AuraFlow): #Diffusers lora AuraFlow
        diffusers_keys = comfy.utils.auraflow_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
        for k in diffusers_keys:
            if k.endswith(".weight"):
                to = diffusers_keys[k]
                key_lora = "transformer.{}".format(k[:-len(".weight")]) #simpletrainer and probably regular diffusers lora format
                key_map[key_lora] = to

    if isinstance(model, comfy.model_base.PixArt):
        diffusers_keys = comfy.utils.pixart_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
        for k in diffusers_keys:
            if k.endswith(".weight"):
                to = diffusers_keys[k]
                key_lora = "transformer.{}".format(k[:-len(".weight")]) #default format
                key_map[key_lora] = to

                key_lora = "base_model.model.{}".format(k[:-len(".weight")]) #diffusers training script
                key_map[key_lora] = to

                key_lora = "unet.base_model.model.{}".format(k[:-len(".weight")]) #old reference peft script
                key_map[key_lora] = to

    if isinstance(model, comfy.model_base.HunyuanDiT):
        for k in sdk:
            if k.startswith("diffusion_model.") and k.endswith(".weight"):
                key_lora = k[len("diffusion_model."):-len(".weight")]
                key_map["base_model.model.{}".format(key_lora)] = k #official hunyuan lora format

    if isinstance(model, comfy.model_base.Flux): #Diffusers lora Flux
        diffusers_keys = comfy.utils.flux_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
        for k in diffusers_keys:
            if k.endswith(".weight"):
                to = diffusers_keys[k]
                key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format
                key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris
                key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer

    if isinstance(model, comfy.model_base.GenmoMochi):
        for k in sdk:
            if k.startswith("diffusion_model.") and k.endswith(".weight"): #Official Mochi lora format
                key_lora = k[len("diffusion_model."):-len(".weight")]
                key_map["{}".format(key_lora)] = k

    if isinstance(model, comfy.model_base.HunyuanVideo):
        for k in sdk:
            if k.startswith("diffusion_model.") and k.endswith(".weight"):
                # diffusion-pipe lora format
                key_lora = k
                key_lora = key_lora.replace("_mod.lin.", "_mod.linear.").replace("_attn.qkv.", "_attn_qkv.").replace("_attn.proj.", "_attn_proj.")
                key_lora = key_lora.replace("mlp.0.", "mlp.fc1.").replace("mlp.2.", "mlp.fc2.")
                key_lora = key_lora.replace(".modulation.lin.", ".modulation.linear.")
                key_lora = key_lora[len("diffusion_model."):-len(".weight")]
                key_map["transformer.{}".format(key_lora)] = k
                key_map["diffusion_model.{}".format(key_lora)] = k  # Old loras

    if isinstance(model, comfy.model_base.HiDream):
        for k in sdk:
            if k.startswith("diffusion_model."):
                if k.endswith(".weight"):
                    key_lora = k[len("diffusion_model."):-len(".weight")]
                    key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
                    key_map["transformer.{}".format(key_lora)] = k #SimpleTuner regular format

    if isinstance(model, comfy.model_base.ACEStep):
        for k in sdk:
            if k.startswith("diffusion_model.") and k.endswith(".weight"): #Official ACE step lora format
                key_lora = k[len("diffusion_model."):-len(".weight")]
                key_map["{}".format(key_lora)] = k

    return key_map


def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
    """
    Pad a tensor to a new shape with zeros.

    Args:
        tensor (torch.Tensor): The original tensor to be padded.
        new_shape (List[int]): The desired shape of the padded tensor.

    Returns:
        torch.Tensor: A new tensor padded with zeros to the specified shape.

    Note:
        If the new shape is smaller than the original tensor in any dimension,
        the original tensor will be truncated in that dimension.
    """
    if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]):
        raise ValueError("The new shape must be larger than the original tensor in all dimensions")

    if len(new_shape) != len(tensor.shape):
        raise ValueError("The new shape must have the same number of dimensions as the original tensor")

    # Create a new tensor filled with zeros
    padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device)

    # Create slicing tuples for both tensors
    orig_slices = tuple(slice(0, dim) for dim in tensor.shape)
    new_slices = tuple(slice(0, dim) for dim in tensor.shape)

    # Copy the original tensor into the new tensor
    padded_tensor[new_slices] = tensor[orig_slices]

    return padded_tensor

def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, original_weights=None):
    for p in patches:
        strength = p[0]
        v = p[1]
        strength_model = p[2]
        offset = p[3]
        function = p[4]
        if function is None:
            function = lambda a: a

        old_weight = None
        if offset is not None:
            old_weight = weight
            weight = weight.narrow(offset[0], offset[1], offset[2])

        if strength_model != 1.0:
            weight *= strength_model

        if isinstance(v, list):
            v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )

        if isinstance(v, weight_adapter.WeightAdapterBase):
            output = v.calculate_weight(weight, key, strength, strength_model, offset, function, intermediate_dtype, original_weights)
            if output is None:
                logging.warning("Calculate Weight Failed: {} {}".format(v.name, key))
            else:
                weight = output
                if old_weight is not None:
                    weight = old_weight
            continue

        if len(v) == 1:
            patch_type = "diff"
        elif len(v) == 2:
            patch_type = v[0]
            v = v[1]

        if patch_type == "diff":
            diff: torch.Tensor = v[0]
            # An extra flag to pad the weight if the diff's shape is larger than the weight
            do_pad_weight = len(v) > 1 and v[1]['pad_weight']
            if do_pad_weight and diff.shape != weight.shape:
                logging.info("Pad weight {} from {} to shape: {}".format(key, weight.shape, diff.shape))
                weight = pad_tensor_to_shape(weight, diff.shape)

            if strength != 0.0:
                if diff.shape != weight.shape:
                    logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, diff.shape, weight.shape))
                else:
                    weight += function(strength * comfy.model_management.cast_to_device(diff, weight.device, weight.dtype))
        elif patch_type == "set":
            weight.copy_(v[0])
        elif patch_type == "model_as_lora":
            target_weight: torch.Tensor = v[0]
            diff_weight = comfy.model_management.cast_to_device(target_weight, weight.device, intermediate_dtype) - \
                          comfy.model_management.cast_to_device(original_weights[key][0][0], weight.device, intermediate_dtype)
            weight += function(strength * comfy.model_management.cast_to_device(diff_weight, weight.device, weight.dtype))
        else:
            logging.warning("patch type not recognized {} {}".format(patch_type, key))

        if old_weight is not None:
            weight = old_weight

    return weight


Here's the fix.

Other

Image

Implement more of those. Make them work. Don't skip steps.

The LOHA doesn't actually load correctly on top of it. It has specific parameters that are completely ignored.


import logging
from typing import Optional

import torch
import comfy.model_management
from .base import WeightAdapterBase, weight_decompose, pad_tensor_to_shape


class LoConAdapter(WeightAdapterBase):
    name = "locon"

    def __init__(self, loaded_keys, weights):
        self.loaded_keys = loaded_keys
        self.weights = weights

    @classmethod
    def load(
        cls,
        x: str,
        lora: dict[str, torch.Tensor],
        alpha: float,
        dora_scale: torch.Tensor,
        loaded_keys: set[str] = None,
    ) -> Optional["LoConAdapter"]:
        if loaded_keys is None:
            loaded_keys = set()

        # Detect LoCon-style keys
        keys = {
            "up": f"{x}.lora_up.weight",
            "down": f"{x}.lora_down.weight",
            "mid": f"{x}.lora_mid.weight",  # optional
            "reshape": f"{x}.reshape_weight",  # optional
        }

        # Fallback keys for other variants (e.g., hada_t1)
        if keys["mid"] not in lora:
            for alt in [f"{x}.hada_t1", f"{x}.hada_mid", f"{x}.mid"]:
                if alt in lora:
                    keys["mid"] = alt
                    break

        # Check if up/down at least exists
        if keys["up"] not in lora or keys["down"] not in lora:
            return None

        # Fetch weights
        up = lora[keys["up"]]
        down = lora[keys["down"]]
        mid = lora.get(keys["mid"], None)
        reshape = None
        try:
            if keys["reshape"] in lora:
                reshape = lora[keys["reshape"]].tolist()
                loaded_keys.add(keys["reshape"])
        except Exception:
            pass

        # Track loaded keys
        loaded_keys.update([keys["up"], keys["down"]])
        if mid is not None:
            loaded_keys.add(keys["mid"])

        weights = (up, down, alpha, mid, dora_scale, reshape)
        return cls(loaded_keys, weights)

    def calculate_weight(
        self,
        weight,
        key,
        strength,
        strength_model,
        offset,
        function,
        intermediate_dtype=torch.float32,
        original_weight=None,
    ):
        up, down, alpha, mid, dora_scale, reshape = self.weights

        up = comfy.model_management.cast_to_device(up, weight.device, intermediate_dtype)
        down = comfy.model_management.cast_to_device(down, weight.device, intermediate_dtype)

        if reshape is not None:
            weight = pad_tensor_to_shape(weight, reshape)

        if alpha is not None:
            alpha = alpha / down.shape[0]
        else:
            alpha = 1.0  # default fallback

        if mid is not None:
            mid = comfy.model_management.cast_to_device(mid, weight.device, intermediate_dtype)
            final_shape = [down.shape[1], down.shape[0], mid.shape[2], mid.shape[3]]
            down = (
                torch.mm(
                    down.transpose(0, 1).flatten(start_dim=1),
                    mid.transpose(0, 1).flatten(start_dim=1),
                )
                .reshape(final_shape)
                .transpose(0, 1)
            )

        try:
            diff = torch.mm(up.flatten(start_dim=1), down.flatten(start_dim=1)).reshape(weight.shape)
            if dora_scale is not None:
                weight = weight_decompose(
                    comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype),
                    weight,
                    diff,
                    alpha,
                    strength,
                    intermediate_dtype,
                    function
                )
            else:
                weight += function(((strength * alpha) * diff).type(weight.dtype))
        except Exception as e:
            logging.error(f"[LoConAdapter] Weight patch failed for {key}: {e}")

        return weight

AbstractEyes avatar Jun 26 '25 20:06 AbstractEyes

https://github.com/AbstractEyes/comfyui-lycoris

I have made a correct implementation for precomputation since the hook prepare system does not function correctly with the intended goals of lycoris. The primary (OFFICIAL) load_lora function requires a direct patch within ComfyUI to be properly implemented without precomputation, until then this will function as a stand-in.

This version here has it's own standalone load_lora function in module/load_lora.py and it will substitute as a stand-in for now, employing the correct metadata checks for sd-scripts based trains. This will load and precompute the weights to pass down the pipeline.

The loading calculation substructure will default to cuda when preparing, and then switch to cpu if cuda is not present.

AbstractEyes avatar Jun 27 '25 18:06 AbstractEyes

https://github.com/AbstractEyes/comfyui-lycoris

I have made a correct implementation for precomputation since the hook prepare system does not function correctly with the intended goals of lycoris. The primary (OFFICIAL) load_lora function requires a direct patch within ComfyUI to be properly implemented without precomputation, until then this will function as a stand-in.

This version here has it's own standalone load_lora function in module/load_lora.py and it will substitute as a stand-in for now, employing the correct metadata checks for sd-scripts based trains. This will load and precompute the weights to pass down the pipeline.

The loading calculation substructure will default to cuda when preparing, and then switch to cpu if cuda is not present.

Doesn't work with latest version of ComfyUI:

TypeError: DoubleStreamBlockHooker._forward() got an unexpected keyword argument 'transformer_options'

Valheol avatar Dec 18 '25 01:12 Valheol