easycharts
easycharts copied to clipboard
Easily create data visualization of static or streaming data

Easily create data visualization of static or streaming data
Get Started
pip install easycharts
Create EasyCharts Server
# charts.py
from fastapi import FastAPI
from easycharts import ChartServer
server = FastAPI()
@server.on_event('startup')
async def setup():
server.charts = await ChartServer.create(
server,
charts_db="test"
)
await server.charts.create_dataset(
"test",
labels=['a', 'b', 'c', 'd'],
dataset=[1,2,3,4]
)
Start Server
uvicorn --host 0.0.0.0 --port 0.0.0.0 charts:server

Update Data via API
In a separate window, access the OpenAPI docs to demonstrate dynanimc updates to the graph
http://0.0.0.0:8220/docs

Line

Bar

APIS

Real World Usage - Resource Monitoring
import datetime, psutil
import asyncio
from fastapi import FastAPI
from easycharts import ChartServer
from easyschedule import EasyScheduler
scheduler = EasyScheduler()
server = FastAPI()
every_minute = '* * * * *'
@server.on_event('startup')
async def setup():
asyncio.create_task(scheduler.start())
server.charts = await ChartServer.create(
server,
charts_db="charts_database",
chart_prefix = '/mycharts'
)
await server.charts.create_dataset(
"test",
labels=['a', 'b', 'c', 'd'],
dataset=[1,2,3,4]
)
# set initial sync time
label=datetime.datetime.now().isoformat()[11:19]
await server.charts.create_dataset(
'cpu',
labels=[label],
dataset=[psutil.cpu_percent()]
)
await server.charts.create_dataset(
'mem',
labels=[label],
dataset=[psutil.virtual_memory().percent]
)
@scheduler(schedule=every_minute)
async def resource_monitor():
time_now=datetime.datetime.now().isoformat()[11:19]
# updates CPU & MEM datasets with current time
await server.charts.update_dataset(
'cpu',
label=time_now,
data=psutil.cpu_percent()
)
await server.charts.update_dataset(
'mem',
label=time_now,
data=psutil.virtual_memory().percent
)
