deep-text-recognition-benchmark
deep-text-recognition-benchmark copied to clipboard
100% accuracy with poor predictions on finetuned model
Hi!
Has anyone faced the issue of ideal accuracy already on the 20th iteration of FT, but with poor results?
This is my training command:
!python train.py --train_data /content/drive/MyDrive/lmbd_output_train --valid_data /content/drive/MyDrive/lmbd_output_val --select_data "/" --batch_ratio 1 --Transformation TPS --FeatureExtraction ResNet --SequenceModeling BiLSTM --Prediction Attn --batch_size 256 --data_filtering_off --workers 0 --batch_max_length 80 --num_iter 1000 --valInterval 10 --sensitive --saved_model /content/drive/MyDrive/TPS-ResNet-BiLSTM-Attn-case-sensitive.pth --data_filtering_off --FT --adam --imgW 180 --PAD
I am using small datasets: train - 3000 imgs and val - 1500 imgs to set up the training correctly and then run the training on the huge dataset.