DI-2-FGSM
DI-2-FGSM copied to clipboard
Improving Transferability of Adversarial Examples with Input Diversity
Improving Transferability of Adversarial Examples with Input Diversity
This paper proposed to improve the transferability of adversarial examples by creating diverse input patterns (https://arxiv.org/abs/1803.06978). Instead of only using the original images to generate adversarial examples, the proposed method, Diverse Input Iterative Fast Gradient Sign Method (DI2-FGSM), applies random transformations to the input images at each iteration. The generated adversarial examples are much more transferable than those generated by FGSM and I-FGSM. An example is shown below:
Extension
To improve the transferability further, we
- integrate momentum term into the attack process (https://arxiv.org/abs/1710.06081);
- attack multiple networks simultaneously (https://arxiv.org/abs/1611.02770).
By evaluating this enhanced attack w.r.t. the top 3 defense submissions and 3 official baselines from NIPS 2017 adversarial competition (https://www.kaggle.com/c/nips-2017-non-targeted-adversarial-attack), it reaches an average success rate of 73.0%, which outperforms the top 1 attack submission in the NIPS competition by a large margin of 6.6%. Please refer to the Table 3 in the paper for details.
Relationships between different attacks
Different attacks can be related via different parameter settings, as shown below:

Inception_v3 model
- http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz
Acknowledgements
- For the implementations of random resizing and random padding (https://arxiv.org/abs/1711.01991), the original version is available at https://github.com/cihangxie/NIPS2017_adv_challenge_defense. We adopt a more user-friendly re-implementation https://github.com/anishathalye/obfuscated-gradients in our repo only for releasing purpose.
Citing this work
If you find this work is useful in your research, please consider citing:
@inproceedings{xie2019improving,
title={Improving Transferability of Adversarial Examples with Input Diversity},
author={Xie, Cihang and Zhang, Zhishuai and Zhou, Yuyin and Bai, Song and Wang, Jianyu and Ren, Zhou and Yuille, Alan},
Booktitle = {Computer Vision and Pattern Recognition},
year={2019},
organization={IEEE}
}