asio
asio copied to clipboard
[PLEASE HELP]Facing periodic throughput drop when running a asynchronous boost asio server when it is communicating with other servers present in a different linux network namespace at saturation
I have 2 servers communicating with each other and load generator to calculate the throughput. The below code is of my 1st Server[Main Server], which accepts request from the load generator and communicates with a different server and sends a response. This is minimal code to reproduce the issue I am facing for a much bigger software system.
#include <iostream>
#include <string>
#include <boost/asio.hpp>
#include <boost/asio/thread_pool.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/bind.hpp>
#include "http_server.hh"
using namespace boost::asio;
using ip::tcp;
std::string desired_IP_address = "172.16.0.2"; // For example purposes
class Session : public std::enable_shared_from_this<Session> {
public:
Session(ip::tcp::resolver& resolver,tcp::socket socket, tcp::socket client_socket) : socket_(std::move(socket)), resolver_(resolver), client_socket_(std::move(client_socket)) {}
void start() {
do_read();
}
private:
void do_read() {
auto self(shared_from_this());
socket_.async_read_some(
boost::asio::buffer(data_),
[this, self](boost::system::error_code ec, std::size_t length) {
if (!ec) {
std::string request(data_.data(), length);
path_ = extract_path(request);
resolver_.async_resolve(
ip::tcp::resolver::query("172.16.0.4", "5000"),
[this,self](const boost::system::error_code& ec,
ip::tcp::resolver::iterator it) {
if (ec) {
std::cout << "Error resolving " << "localhost" << ": "
<< ec.message()<< std::endl;
return;
}
// For simplicity, we'll assume the first endpoint will always
// be available.
//std::cout << "localhost" << ": resolved to " << it->endpoint()
// << std::endl;
do_connect(it->endpoint());
});
//handle_request_async(path);
}
});
}
void do_connect(const ip::tcp::endpoint& dest) {
// Remember that the Asio library will make copies of parameters passed
// by const reference, so it's ok to let the endpoint go out of scope
// when this method returns.
auto self(shared_from_this());
boost::asio::ip::tcp::endpoint endpoint(boost::asio::ip::address::from_string("172.16.0.4"), 5000);
client_socket_.async_connect(a
endpoint, [this, self](const boost::system::error_code& ec) {
if (ec) {
std::cout << "Error connecting to " << "localhost"<< ": "
<< ec.message()<< std::endl;
return;
}
//std::cout << "localhost" << ": connected to "
// << client_socket_.remote_endpoint() << std::endl;
do_send_http_get();
});
}
void do_send_http_get() {
auto self(shared_from_this());
// At minimum, the remote server needs to know the path being fetched
// and the host serving that path. The latter is required because a
// single server often hosts multiple domains.
request_ = std::string("GET /") + " HTTP/1.1\r\nHost: " + "example.com" + "\r\n\r\n";
async_write(
client_socket_, buffer(request_),
[this,self](const boost::system::error_code& ec, std::size_t size) {
if (ec) {
std::cout << "Error sending GET " << ec<< std::endl;
return;
}
//std::cout << "localhost" << ": sent " << size << " bytes"<< std::endl;
do_recv_http_get_header();
});
}
void do_recv_http_get_header() {
// Since HTTP/1.1 is a text based protocol, most of it is human readable
// by design. Notice how the "double end of line" character sequence
// ("\r\n\r\n") is used to delimit message sections.
auto self(shared_from_this());
async_read_until(
client_socket_, response_, "\r\n\r\n",
[this, self](const boost::system::error_code& ec, std::size_t size) {
if (ec) {
std::cout << "Error receiving GET header " << ec;
return;
}
//std::cout << "localhost:5000" << ": received " << size << ", streambuf "
// << response_.size();
// The asio::streambuf class can use multiple buffers
// internally, so we need to use a special iterator to copy out
// the header.
std::string header(
buffers_begin(response_.data()),
buffers_begin(response_.data()) + size);
response_.consume(size);
//std::cout << "----------" << std::endl << "localhost:5000"
// << ": header length " << header.size() << std::endl
// << header << std::endl;
// First we'll check for the explicit "Content-Length" length
// field. This provides the exact body length in bytes.
size_t pos = header.find("Content-Length: ");
if (pos != std::string::npos) {
size_t len = std::strtoul(
header.c_str() + pos + sizeof("Content-Length: ") - 1,
nullptr, 10);
do_receive_http_get_body(len - response_.size());
return;
}
// The other alternative is a chunked transfer. There is a quick
// way to determine the remaining length in this case.
pos = header.find("Transfer-Encoding: chunked");
if (pos != std::string::npos) {
do_receive_http_get_chunked_body();
return;
}
std::cout << "Unknown body length";
});
}
void do_receive_http_get_body(size_t len) {
// For "Content-Length" we know exactly how many bytes are left to
// receive.
auto self(shared_from_this());
async_read(
client_socket_, response_, transfer_exactly(len),
[this,self] (const boost::system::error_code& ec, std::size_t size) {
handle_http_get_body(ec, size);
});
}
void do_receive_http_get_chunked_body() {
// For chunked transfers the final body chunk will be terminated by
// another "double end of line" delimiter.
auto self(shared_from_this());
async_read_until(
client_socket_, response_, "\r\n\r\n",
[this,self] (const boost::system::error_code& ec, std::size_t size) {
handle_http_get_body(ec, size);
});
}
void handle_http_get_body(const boost::system::error_code& ec,
std::size_t size) {
if (ec) {
std::cout << "Error receiving GET body " << ec;
return;
}
//std::cout << "localhost:5000" << ": received " << size << ", streambuf "
// << response_.size();
// We can finally consume the body and print it out if desired.
const auto& data = response_.data();
std::string response_body(buffers_begin(data), buffers_end(data));
response_.consume(size);
//std::cout << "----------" << std::endl << "localhost:5000" << ": body length "
// << response_body.size() << std::endl;
//std::cout << response_body << std::endl;
handle_request_async();
}
void handle_request_async() {
auto self(shared_from_this());
async_response([this,self](const std::string& response) {
// std::cout << "path " << path_ << std::endl;
// std::cout << response << std::endl;
async_write(socket_, boost::asio::buffer(response),
[this,self](boost::system::error_code ec, std::size_t /*length*/) {
if (!ec) {
//std::cout << "response" << std::endl;
boost::system::error_code ignored_ec;
socket_.shutdown(tcp::socket::shutdown_both, ignored_ec);
}
});
});
}
void async_response(std::function<void(const std::string&)> callback) {
// Assuming handle_request returns HTTP_Response asynchronously
HTTP_Response* htmlResponse = handle_request(path_);
//std::cout << "path: " << path << std::endl;
std::string response = htmlResponse->body;
//std::cout << "content: " << response << std::endl;
callback(response);
delete htmlResponse;
}
// Function to extract path from the HTTP request
std::string extract_path(const std::string& request) {
// Logic to extract path from the request string
// Example logic: extracting the path after the GET method
std::string path;
//std::cout << request << std::endl;
// Implement your path extraction logic here
// Find the end of the request line (the first line of the HTTP request)
std::size_t requestLineEnd = request.find("\r\n");
if (requestLineEnd != std::string::npos) {
std::string requestLine = request.substr(0, requestLineEnd);
// Split the request line into parts (method, path, protocol)
std::vector<std::string> parts;
boost::split(parts, requestLine, boost::is_any_of(" "));
// The second part typically contains the path (e.g., "GET /path HTTP/1.1")
if (parts.size() >= 2) {
path = parts[1]; // Extract the path from the request line
}
}
return path;
}
tcp::socket socket_;
tcp::socket client_socket_;
std::array<char, 8192> data_;
std::string path_;
std::string request_;
boost::asio::streambuf response_;
ip::tcp::resolver& resolver_;
};
class Server {
public:
Server(boost::asio::io_context& io_context, short port)
: acceptor_(io_context, tcp::endpoint(boost::asio::ip::make_address(desired_IP_address), port)),
//acceptor_(io_context, tcp::endpoint(tcp::v4(), port)),
socket_(io_context), resolver_(io_context), client_socket_(io_context)
{
do_accept();
}
private:
void do_accept() {
acceptor_.async_accept(
socket_,
[this] (boost::system::error_code ec) {
if (!ec) {
std::make_shared<Session>(resolver_, std::move(socket_), std::move(client_socket_))->start();
}
do_accept();
});
}
tcp::acceptor acceptor_;
tcp::socket socket_;
tcp::socket client_socket_;
ip::tcp::resolver resolver_;
};
int main() {
try {
boost::asio::io_context io_context;
Server server(io_context, 8080);
boost::asio::thread_pool pool(40);
for (std::size_t i = 0; i < 40; ++i)
boost::asio::post(pool, [&io_context]() { io_context.run(); });
pool.join();
} catch (std::exception& e) {
std::cerr << "Exception: " << e.what() << std::endl;
}
return 0;
}
I have another server [Service Discovery Server] to which the above server communicates with
#include <cpprest/http_listener.h>
#include <cpprest/json.h>
using namespace web;
using namespace web::http;
using namespace web::http::experimental::listener;
const utility::string_t SERVER_URL = U("http://172.16.0.4:5000");
void handle_get(const http_request& request)
{
utility::string_t path = request.request_uri().path();
std::string response = "http://172.16.0.3:5005";
http_response httpResponse(status_codes::OK);
json::value jsonResponse;
jsonResponse[U("message")] = json::value::string(U(response));
utility::string_t responseString = jsonResponse.serialize();
httpResponse.headers().set_content_type(U("application/json"));
httpResponse.set_body(responseString);
request.reply(httpResponse);
//std::cout << "Connected" << std::endl;
}
int main()
{
http_listener listener(SERVER_URL);
listener.support(methods::GET, handle_get);
try {
listener.open().then([&listener]() {
std::cout << "Server started listening on " << SERVER_URL << std::endl;
}).wait();
std::cout << "Press Enter to exit." << std::endl;
std::cin.ignore();
listener.close().wait();
}
catch (const std::exception& e) {
std::cerr << "Server error: " << e.what() << std::endl;
}
return 0;
}
And the load generator is as follows, which calculates the throughput at each second:
/* run using: ./load_gen localhost <server port> <number of concurrent users>
<think time (in s)> <test duration (in s)> */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
#include <pthread.h>
#include <sys/time.h>
#include <signal.h>
#include <time.h>
#include <sys/epoll.h>
#include <sys/timerfd.h>
#include <arpa/inet.h>
#define MAX_EVENTS 1
FILE *log_file;
int token = 0;
pthread_mutex_t tokenMutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t fileMutex = PTHREAD_MUTEX_INITIALIZER;
int time_up;
//FILE *log_file;
// user info struct
struct user_info {
// user id
int id;
// socket info
int portno;
char *hostname;
float think_time;
// user metrics
int total_count;
float total_rtt;
};
struct thread_args {
struct user_info *info;
int user_count;
};
// error handling function
void error(char *msg) {
perror(msg);
//exit(0);
}
// time diff in seconds
float time_diff(struct timeval *t2, struct timeval *t1) {
return (t2->tv_sec - t1->tv_sec) + (t2->tv_usec - t1->tv_usec) / 1e6;
}
void getTimestamp(char *timestamp, int timestampSize) {
struct timeval tv;
struct tm *tm_info;
gettimeofday(&tv, NULL);
tm_info = localtime(&tv.tv_sec);
snprintf(timestamp, timestampSize, "%02d:%02d:%02d.%06ld",
tm_info->tm_hour, tm_info->tm_min, tm_info->tm_sec, tv.tv_usec);
}
void *calculate_throughput(void *arg) {
struct thread_args *args = (struct thread_args *)arg;
struct user_info *info = args->info;
int user_count = args->user_count;
int timer_fd = timerfd_create(CLOCK_MONOTONIC, 0);
if(timer_fd == -1){
perror("timerfd_fd");
exit(1);
}
struct itimerspec timer_spec;
memset(&timer_spec, 0, sizeof(timer_spec));
timer_spec.it_value.tv_sec = 1;
timer_spec.it_value.tv_nsec = 0;
timer_spec.it_interval.tv_sec = 1;
timer_spec.it_interval.tv_nsec = 0;
if(timerfd_settime(timer_fd,0, &timer_spec, NULL) == -1) {
perror("timerfd_settime");
exit(1);
}
struct timeval start, end;
int epoll_fd = epoll_create1(0);
if(epoll_fd == -1) {
perror("epoll_create1");
exit(1);
}
struct epoll_event event;
event.events = EPOLLIN;
event.data.fd = timer_fd;
if(epoll_ctl(epoll_fd, EPOLL_CTL_ADD, timer_fd, &event) == -1) {
perror("epoll_ctl");
exit(1);
}
gettimeofday(&start, NULL);
int last_count = 0;
while (!time_up) {
struct epoll_event events[MAX_EVENTS];
int num_events = epoll_wait(epoll_fd, events, MAX_EVENTS, -1);
if (num_events == -1) {
perror("epoll_wait");
exit(1);
}
for (int i = 0; i < num_events; i++) {
if (events[i].data.fd == timer_fd) {
uint64_t c = 0; //number of times the timer expired
int r = read(timer_fd, &c, sizeof(c));
int count=0;
for (int i = 0; i < user_count; i++) {
// Access info[i] to work with user-specific data
count=count+info[i].total_count;
}
gettimeofday(&end, NULL);
float wait_time_s = time_diff(&end, &start);
float throughput = ((float)(count - last_count)) / wait_time_s;
printf("%f\n", throughput);
// printf("Throughput (requests/second): %f\n", throughput);
// printf("Count: %d\n", count-last_count);
// printf("Total Count: %d\n", last_count);
last_count = count;
gettimeofday(&start, NULL);
}
}
}
close(epoll_fd);
close(timer_fd);
}
// user thread function
void *user_function(void *arg) {
/* get user info */
struct user_info *info = (struct user_info *)arg;
int sockfd, n,num;
char buffer[1024];
char timestampStart[20];
char timestampEnd[20]; // Adjust the size as needed
struct timeval start, end;
struct sockaddr_in serv_addr;
struct hostent *server;
info->total_count=0;
info->total_rtt=0;
char* requests[] = {"/index.html ","/apart1/index.html ","/apart2/index.html ","/apart1/flat11/index.html ", "/apart1/flat12/index.html ",
"/apart2/flat21/index.html ","/apart3/flat31/index.html ","/apart3/flat32/index.html "};
server=gethostbyname(info->hostname);
if(server== NULL){
error("No such host");
}
bzero((char *)&serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
//bzero((char *)&serv_addr.sin_addr.s_addr, sizeof(serv_addr.sin_addr.s_addr));
serv_addr.sin_port = htons(info->portno);
if (inet_pton(AF_INET, info->hostname, &serv_addr.sin_addr) <= 0) {
perror("Error converting IP address");
close(sockfd);
exit(1);
}
while (1) {
/* start timer */
gettimeofday(&start, NULL);
getTimestamp(timestampStart, sizeof(timestampStart));
//printf("user id is %d %s %f\n",info->id,info->hostname,info->think_time);
/* TODO: create socket */
sockfd = socket(AF_INET,SOCK_STREAM,0);
if(sockfd < 0){
error("Error opening socket");
continue;
}
/* TODO: send message to server */
if (connect(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0){
error("ERROR connecting");
close(sockfd);
continue;
}
char tokenString[20];
pthread_mutex_lock(&tokenMutex);
token++;
sprintf(tokenString, "%d",token);
pthread_mutex_unlock(&tokenMutex);
bzero(buffer, 1024);
//strcpy(buffer,"GET /apart2/ HTTP/1.0\n");
strcpy(buffer,"GET");
strcat(buffer, " ");
// strcat(buffer, " /");
// strcat(buffer, tokenString);
num = (rand() % (8));
strcat(buffer,requests[num]);
strcat(buffer,"HTTP/1.0\r\n");
strcat(buffer, "\r\n");
n = write(sockfd,buffer,strlen(buffer));
if (n < 0){
error("ERROR writing to socket");
close(sockfd);
continue;
}
//printf("%s\n", buffer);
/* TODO: read reply from server */
bzero(buffer, 1024);
char fileBuffer[4096];
strcat(fileBuffer, "======================================\n");
strcat(fileBuffer, "token: ");
strcat(fileBuffer, tokenString);
strcat(fileBuffer, "\n");
//printf("%s\n", tokenString);
while((n = read(sockfd, buffer, sizeof(buffer))) > 0) {
strncat(fileBuffer, buffer, n);
// Check if the headerBuffer is getting too large, and break the loop if necessary
if (strlen(fileBuffer) >= 4096 - 1) {
printf("fileBuffer is full, breaking the loop\n");
break;
}
}
//printf("%s", buffer);
getTimestamp(timestampEnd, sizeof(timestampEnd));
strcat(fileBuffer, "\n");
strcat(fileBuffer, "request_begin_time: ");
strcat(fileBuffer, timestampStart);
strcat(fileBuffer, "\n");
strcat(fileBuffer, "request_end_time: ");
strcat(fileBuffer, timestampEnd);
strcat(fileBuffer, "\n");
strcat(fileBuffer, "======================================\n");
pthread_mutex_lock(&fileMutex);
fprintf(log_file, "%s \n", fileBuffer);
fflush(log_file);
pthread_mutex_unlock(&fileMutex);
bzero(fileBuffer, 4096);
//printf("buffer:%s \t %s \n", buffer, tokenString);
if (n< 0){
error("ERROR reading from socket");
printf("Error at read\n");
}
else{
info->total_count++;
}
//fprintf(log_file, "User #%d finished\n", info->id);
//printf("%s\n", buffer);
/* TODO: close socket */
close(sockfd);
/* end timer */
gettimeofday(&end, NULL);
/* if time up, break */
if (time_up)
break;
/* TODO: update user metrics */
info->total_rtt=info->total_rtt+time_diff(&end,&start);
/* TODO: sleep for think time */
usleep(info->think_time*(1000000));
}
/* exit thread */
info->total_rtt=info->total_rtt/info->total_count;
//fprintf(log_file, "User #%d finished\n", info->id);
//fflush(log_file);
pthread_exit(NULL);
}
int main(int argc, char *argv[]) {
int user_count, portno, test_duration;
float think_time;
char *hostname;
int avg_count=0;
float avg_rtt=0,throughput;
if (argc != 6) {
fprintf(stderr,
"Usage: %s <hostname> <server port> <number of concurrent users> "
"<think time (in s)> <test duration (in s)>\n",
argv[0]);
exit(0);
}
hostname = argv[1];
portno = atoi(argv[2]);
user_count = atoi(argv[3]);
think_time = atof(argv[4]);
test_duration = atoi(argv[5]);
printf("Hostname: %s\n", hostname);
printf("Port: %d\n", portno);
printf("User Count: %d\n", user_count);
printf("Think Time: %f s\n", think_time);
printf("Test Duration: %d s\n", test_duration);
/* open log file */
log_file = fopen("log.txt", "w");
if (log_file == NULL) {
perror("Error opening log file");
exit(1);
}
pthread_t threads[user_count];
struct user_info info[user_count];
struct timeval start, end;
struct thread_args thread_data;
thread_data.info = info;
thread_data.user_count = user_count;
pthread_t throughput_thread;
pthread_create(&throughput_thread, NULL, calculate_throughput, (void *)&thread_data);
/* start timer */
gettimeofday(&start, NULL);
time_up = 0;
for (int i = 0; i < user_count; ++i) {
/* TODO: initialize user info */
info[i].id=i;
info[i].hostname = hostname;
info[i].portno=portno;
info[i].think_time=think_time;
/* TODO: create user thread */
pthread_create(&threads[i],NULL,user_function,&info[i]);
//fprintf(log_file, "Created thread %d\n", i);
}
/* TODO: wait for test duration */
sleep(test_duration);
//fprintf(log_file, "Woke up\n");
/* end timer */
time_up = 1;
gettimeofday(&end, NULL);
/* TODO: wait for all threads to finish */
for (int i = 0; i < user_count; ++i) {
pthread_join(threads[i],NULL);
}
/* TODO: print results */
for (int i = 0; i < user_count; ++i) {
//printf("user id %d req. count: %d rtt :%f \n",i,info[i].total_count, info[i].total_rtt);
avg_rtt=avg_rtt+info[i].total_rtt;
avg_count=avg_count+info[i].total_count;
}
printf("avg count is %d rtt sum is %f \n",avg_count,avg_rtt);
float wait_time_s=time_diff(&end,&start);
avg_rtt=avg_rtt/user_count;
throughput=avg_count/wait_time_s;//to do correct formula
printf("average throughput : %f \n",throughput);
printf("avg rtt : %f \n",avg_rtt);
printf("Ending program\n");
/* close log file */
fclose(log_file);
return 0;
}
So when I am running all these on localhost, I am getting a consistent throughput, without much variation. But I am running them in different Linux network namespaces, then I am facing a throughput drop on the main server. The issue seems to be in the "async_connect" function, since sometimes I am getting error for it. But neither the error or throughput drop is present when running these servers on localhost. NOTE: I am pinning the main server to a single core and saturating it to 100% to capture the throughput at saturation. The throughput plot is as follows:
Moreover, earlier I was completely using the cpprestsdk library, observed this throughput drop during inter-namespace communication , so implemented the same in boost asio, but found the same issue.
Am I doing something wrong above due to which I am seeing this periodic drop in throughput ?