coloc
coloc copied to clipboard
runsusie and susieR results differ
Hi Chris,
I was using runsusie but for some regions, it doesn't give me any credible sets. However, when I run the same dataset using susieR, I get credible sets. Also, I compared the output from runsusie and susieR and they are different. Do you know why this is happening?
No, this shouldn't happen because runsusie calls susieR. Could you please share the data for this?
-- https://chr1swallace.github.io
From: Marcela Johnson @.> Sent: Tuesday, November 28, 2023 12:55:42 AM To: chr1swallace/coloc @.> Cc: Subscribed @.***> Subject: [chr1swallace/coloc] runsusie and susieR results differ (Issue #142)
Hi Chris,
I was using runsusie but for some regions, it doesn't give me any credible sets. However, when I run the same dataset using susieR, I get credible sets. Also, I compared the output from runsusie and susieR and they are different. Do you know why this is happening?
— Reply to this email directly, view it on GitHubhttps://github.com/chr1swallace/coloc/issues/142, or unsubscribehttps://github.com/notifications/unsubscribe-auth/AAQWR2ERRKI2WCX3NJD3N23YGUZA5AVCNFSM6AAAAAA744DHHOVHI2DSMVQWIX3LMV43ASLTON2WKOZSGAYTGMZZGM4DANY. You are receiving this because you are subscribed to this thread.Message ID: @.***>
Unfortunately, I can't share the data. I have attached an example of the output for both commands. Also, these are the commands I am using: S1 <- runsusie(D1, estimate_residual_variance = F, n = 555634, refine = T) gwas_susie <- susie_rss(gwas_for_coloc$Z, R = loci_r_matrix, L = 10, n = 555634, estimate_residual_variance = F, refine=T) They are both using the same LD matrix and same data. However, maybe the Z scores are being calculated differently? I have the latest version available in GitHub of susieR, maybe this could also make a difference.
The z scores in runsusie are beta/sqrt(varbeta)
What is the magnitude of your z scores at those snps though? It is very unusual to fine 6 single variant credible sets
From: Marcela Johnson @.> Sent: Tuesday, November 28, 2023 11:25:45 AM To: chr1swallace/coloc @.> Cc: Chris Wallace @.>; Comment @.> Subject: Re: [chr1swallace/coloc] runsusie and susieR results differ (Issue #142)
Unfortunately, I can't share the data. I have attached an example of the output for both commands. Also, these are the commands I am using: S1 <- runsusie(D1, estimate_residual_variance = F, n = 555634, refine = T) gwas_susie <- susie_rss(gwas_for_coloc$Z, R = loci_r_matrix, L = 10, n = 555634, estimate_residual_variance = F) They are both using the same LD matrix and same data. However, maybe the Z scores are being calculated differently?
Screenshot.2023-11-28.at.6.24.08.AM.png (view on web)https://github.com/chr1swallace/coloc/assets/49694113/389dc460-ede4-424d-8ad9-173c0fc46e21 Screenshot.2023-11-28.at.6.24.26.AM.png (view on web)https://github.com/chr1swallace/coloc/assets/49694113/e886dd55-8312-466f-bfe3-034b3603a215 , refine=T)
— Reply to this email directly, view it on GitHubhttps://github.com/chr1swallace/coloc/issues/142#issuecomment-1829631369, or unsubscribehttps://github.com/notifications/unsubscribe-auth/AAQWR2ANRSNNKQLYDEDIZG3YGXC3TAVCNFSM6AAAAAA744DHHOVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTQMRZGYZTCMZWHE. You are receiving this because you commented.
I checked the z-scores and they are the same with my formula and yours. Attached is the distribution of the z-scores. 911736_990053zscore_hist_1112823.pdf
This happened to me as well:
gwas_S=runsusie(gwas,n = unique(gwas$N),L = 10, max_iter = 2500,verbose=TRUE,coverage = 0.99, min_abs_corr = sqrt(0.4),refine = T) running max iterations: 2500 [1] "objective:-16969.693590593" [1] "objective:-16969.6211774467" [1] "objective:-16969.5931406855" [1] "objective:-16969.5784032943" [1] "objective:-16969.5687705576" [1] "objective:-16969.5610090115" [1] "objective:-16969.5536898941" [1] "objective:-16969.5459284366" [1] "objective:-16969.5364229281" [1] "objective:-16969.5228911058" [1] "objective:-16969.5017541661" [1] "objective:-16969.4676286733" [1] "objective:-16969.4152138044" [1] "objective:-16969.3516179333" [1] "objective:-16969.3016357743" [1] "objective:-16969.2752213206" [1] "objective:-16969.2639810721" [1] "objective:-16969.2594363808" [1] "objective:-16969.2573272553" [1] "objective:-16969.2560825934" [1] "objective:-16969.2552228556" converged: TRUE summary(gwas_S)
Variables in credible sets:
variable variable_prob cs 354 1.0000000000 4 801 1.0000000000 3 838 0.1766969636 6 836 0.1736468743 6 810 0.1560065758 6 107 0.1044441996 5 104 0.1013487080 5 809 0.0925986824 6 81 0.0827069134 5 100 0.0581785893 5 852 0.0465301371 6 805 0.0302825176 6 844 0.0283636475 6 824 0.0281428096 6 848 0.0281107760 6 825 0.0280476100 6 826 0.0277783989 6 829 0.0262627277 6 818 0.0262582751 6 840 0.0257368057 6 813 0.0255036182 6 821 0.0223707009 6 874 0.0191023850 6 865 0.0188001994 6 138 0.0165209232 5 72 0.0163644076 5 58 0.0163203527 5 71 0.0161607759 5 68 0.0152525246 5 36 0.0151258413 5 24 0.0150888761 5 18 0.0150728397 5 15 0.0150464225 5 60 0.0149663343 5 76 0.0149004323 5 89 0.0148920532 5 75 0.0148654132 5 12 0.0148394278 5 184 0.0148378343 5 59 0.0148324238 5 35 0.0148087350 5 44 0.0148059259 5 64 0.0147951808 5 34 0.0147619432 5 43 0.0147575432 5 25 0.0147447166 5 28 0.0147048548 5 27 0.0147026981 5 39 0.0146483521 5 66 0.0146307209 5 54 0.0145901830 5 192 0.0145680505 5 30 0.0144262035 5 70 0.0143358401 5 29 0.0142752598 5 129 0.0140407037 5 172 0.0139046679 5 146 0.0138850559 5 47 0.0138343094 5 167 0.0138274744 5 152 0.0137749771 5 147 0.0137668958 5 38 0.0137462694 5 145 0.0136617665 5 63 0.0134298156 5 804 0.0131904877 6 141 0.0129086439 5 163 0.0118078825 5 96 0.0079051393 5 97 0.0048937345 5 491 0.0008941885 5 505 0.0008890025 5 473 0.0008244679 5 3 0.0004672167 5 497 0.0004122179 5
Credible sets summary:
cs cs_log10bf cs_avg_r2 cs_min_r2 3 16.227200 1.0000000 1.0000000 4 72.959516 1.0000000 1.0000000 5 44.486494 0.9780216 0.7662516 6 3.679031 0.8794713 0.6670446 variable 801 354 3,12,15,18,24,25,27,28,29,30,34,35,36,38,39,43,44,47,54,58,59,60,63,64,66,68,70,71,72,75,76,81,89,96,97,100,104,107,129,138,141,145,146,147,152,163,167,172,184,192,473,491,497,505 804,805,809,810,813,818,821,824,825,826,829,836,838,840,844,848,852,865,874
c = susie_rss(gwas$z, gwas$LD, n = unique(gwas$N), L = 10, max_iter = 2500, min_abs_corr = sqrt(0.4),verbose=TRUE,coverage = 0.99) [1] "objective:-16969.693590593" [1] "objective:-16969.6211774467" [1] "objective:-16969.5931406855" [1] "objective:-16969.5784032943" [1] "objective:-16969.5687705576" [1] "objective:-16969.5610090115" [1] "objective:-16969.5536898941" [1] "objective:-16969.5459284366" [1] "objective:-16969.5364229281" [1] "objective:-16969.5228911058" [1] "objective:-16969.5017541661" [1] "objective:-16969.4676286733" [1] "objective:-16969.4152138044" [1] "objective:-16969.3516179333" [1] "objective:-16969.3016357743" [1] "objective:-16969.2752213206" [1] "objective:-16969.2639810721" [1] "objective:-16969.2594363808" [1] "objective:-16969.2573272553" [1] "objective:-16969.2560825934" [1] "objective:-16969.2552228556" summary(c)
Variables in credible sets:
variable variable_prob cs 732 0.186933199 1 745 0.100456359 1 764 0.094084969 1 779 0.091830763 1 781 0.091798942 1 730 0.089566402 1 722 0.076941801 1 724 0.073764866 1 544 0.064415496 1 112 0.054626782 1 782 0.037255938 1 460 0.031753494 1 815 0.030612106 1 784 0.008439453 1 1350 0.007984235 1 1140 0.007260920 1 1197 0.006880256 1 1266 0.006870096 1 1315 0.006855586 1 712 0.006746137 1
Credible sets summary:
cs cs_log10bf cs_avg_r2 cs_min_r2 1 60.48482 0.9437577 0.8504178 variable 112,460,544,712,722,724,730,732,745,764,779,781,782,784,815,1140,1197,1266,1315,1350
Can you show me str(gwas)?
-- https://chr1swallace.github.io
From: catheriz @.> Sent: Thursday, March 7, 2024 8:39:46 PM To: chr1swallace/coloc @.> Cc: Chris Wallace @.>; Comment @.> Subject: Re: [chr1swallace/coloc] runsusie and susieR results differ (Issue #142)
This happened to me as well:
gwas_S=runsusie(gwas,n = unique(gwas$N),L = 10, max_iter = 2500,verbose=TRUE,coverage = 0.99, min_abs_corr = sqrt(0.4),refine = T) running max iterations: 2500 [1] "objective:-16969.693590593" [1] "objective:-16969.6211774467" [1] "objective:-16969.5931406855" [1] "objective:-16969.5784032943" [1] "objective:-16969.5687705576" [1] "objective:-16969.5610090115" [1] "objective:-16969.5536898941" [1] "objective:-16969.5459284366" [1] "objective:-16969.5364229281" [1] "objective:-16969.5228911058" [1] "objective:-16969.5017541661" [1] "objective:-16969.4676286733" [1] "objective:-16969.4152138044" [1] "objective:-16969.3516179333" [1] "objective:-16969.3016357743" [1] "objective:-16969.2752213206" [1] "objective:-16969.2639810721" [1] "objective:-16969.2594363808" [1] "objective:-16969.2573272553" [1] "objective:-16969.2560825934" [1] "objective:-16969.2552228556" converged: TRUE summary(gwas_S)
Variables in credible sets:
variable variable_prob cs 354 1.0000000000 4 801 1.0000000000 3 838 0.1766969636 6 836 0.1736468743 6 810 0.1560065758 6 107 0.1044441996 5 104 0.1013487080 5 809 0.0925986824 6 81 0.0827069134 5 100 0.0581785893 5 852 0.0465301371 6 805 0.0302825176 6 844 0.0283636475 6 824 0.0281428096 6 848 0.0281107760 6 825 0.0280476100 6 826 0.0277783989 6 829 0.0262627277 6 818 0.0262582751 6 840 0.0257368057 6 813 0.0255036182 6 821 0.0223707009 6 874 0.0191023850 6 865 0.0188001994 6 138 0.0165209232 5 72 0.0163644076 5 58 0.0163203527 5 71 0.0161607759 5 68 0.0152525246 5 36 0.0151258413 5 24 0.0150888761 5 18 0.0150728397 5 15 0.0150464225 5 60 0.0149663343 5 76 0.0149004323 5 89 0.0148920532 5 75 0.0148654132 5 12 0.0148394278 5 184 0.0148378343 5 59 0.0148324238 5 35 0.0148087350 5 44 0.0148059259 5 64 0.0147951808 5 34 0.0147619432 5 43 0.0147575432 5 25 0.0147447166 5 28 0.0147048548 5 27 0.0147026981 5 39 0.0146483521 5 66 0.0146307209 5 54 0.0145901830 5 192 0.0145680505 5 30 0.0144262035 5 70 0.0143358401 5 29 0.0142752598 5 129 0.0140407037 5 172 0.0139046679 5 146 0.0138850559 5 47 0.0138343094 5 167 0.0138274744 5 152 0.0137749771 5 147 0.0137668958 5 38 0.0137462694 5 145 0.0136617665 5 63 0.0134298156 5 804 0.0131904877 6 141 0.0129086439 5 163 0.0118078825 5 96 0.0079051393 5 97 0.0048937345 5 491 0.0008941885 5 505 0.0008890025 5 473 0.0008244679 5 3 0.0004672167 5 497 0.0004122179 5
Credible sets summary:
cs cs_log10bf cs_avg_r2 cs_min_r2 3 16.227200 1.0000000 1.0000000 4 72.959516 1.0000000 1.0000000 5 44.486494 0.9780216 0.7662516 6 3.679031 0.8794713 0.6670446 variable 801 354 3,12,15,18,24,25,27,28,29,30,34,35,36,38,39,43,44,47,54,58,59,60,63,64,66,68,70,71,72,75,76,81,89,96,97,100,104,107,129,138,141,145,146,147,152,163,167,172,184,192,473,491,497,505 804,805,809,810,813,818,821,824,825,826,829,836,838,840,844,848,852,865,874
c = susie_rss(gwas$z, gwas$LD, n = unique(gwas$N), L = 10, max_iter = 2500, min_abs_corr = sqrt(0.4),verbose=TRUE,coverage = 0.99) [1] "objective:-16969.693590593" [1] "objective:-16969.6211774467" [1] "objective:-16969.5931406855" [1] "objective:-16969.5784032943" [1] "objective:-16969.5687705576" [1] "objective:-16969.5610090115" [1] "objective:-16969.5536898941" [1] "objective:-16969.5459284366" [1] "objective:-16969.5364229281" [1] "objective:-16969.5228911058" [1] "objective:-16969.5017541661" [1] "objective:-16969.4676286733" [1] "objective:-16969.4152138044" [1] "objective:-16969.3516179333" [1] "objective:-16969.3016357743" [1] "objective:-16969.2752213206" [1] "objective:-16969.2639810721" [1] "objective:-16969.2594363808" [1] "objective:-16969.2573272553" [1] "objective:-16969.2560825934" [1] "objective:-16969.2552228556" summary(c)
Variables in credible sets:
variable variable_prob cs 732 0.186933199 1 745 0.100456359 1 764 0.094084969 1 779 0.091830763 1 781 0.091798942 1 730 0.089566402 1 722 0.076941801 1 724 0.073764866 1 544 0.064415496 1 112 0.054626782 1 782 0.037255938 1 460 0.031753494 1 815 0.030612106 1 784 0.008439453 1 1350 0.007984235 1 1140 0.007260920 1 1197 0.006880256 1 1266 0.006870096 1 1315 0.006855586 1 712 0.006746137 1
Credible sets summary:
cs cs_log10bf cs_avg_r2 cs_min_r2 1 60.48482 0.9437577 0.8504178 variable 112,460,544,712,722,724,730,732,745,764,779,781,782,784,815,1140,1197,1266,1315,1350
— Reply to this email directly, view it on GitHubhttps://github.com/chr1swallace/coloc/issues/142#issuecomment-1984389925, or unsubscribehttps://github.com/notifications/unsubscribe-auth/AAQWR2GUF5FI4VMVKYMJUMLYXDGBFAVCNFSM6AAAAAA744DHHOVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTSOBUGM4DSOJSGU. You are receiving this because you commented.Message ID: @.***>
str(gwas) List of 12 $ snp : chr [1:1392] "chr6:31413077:G:T" "chr6:31413120:C:T" "chr6:31413166:G:A" "chr6:31413173:C:T" ... $ chromosome: num [1:1392] 6 6 6 6 6 6 6 6 6 6 ... $ position : num [1:1392] 31413077 31413120 31413166 31413173 31413197 ... $ allele1 : chr [1:1392] "T" "T" "A" "T" ... $ allele2 : chr [1:1392] "G" "C" "G" "C" ... $ beta : num [1:1392] -0.354 -0.754 -0.358 -0.337 -0.354 ... $ se : num [1:1392] 0.0942 0.1866 0.0941 0.1041 0.0941 ... $ z : num [1:1392] -3.76 -4.04 -3.81 -3.23 -3.77 ... $ N : int [1:1392] 12085 12085 12085 12085 12085 12085 12085 12085 12085 12085 ... $ varbeta : num [1:1392] 0.00887 0.03481 0.00885 0.01084 0.00886 ... $ LD : num [1:1392, 1:1392] 1 -0.154 0.999 0.841 1 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:1392] "chr6:31413077:G:T" "chr6:31413120:C:T" "chr6:31413166:G:A" "chr6:31413173:C:T" ... .. ..$ : chr [1:1392] "chr6:31413077:G:T" "chr6:31413120:C:T" "chr6:31413166:G:A" "chr6:31413173:C:T" ... $ type : chr "cc"
I've encountered a similar issue. It's possible that the susieR method did not achieve convergence, yet it could still produce a result. Conversely, when using the coloc-susie method, incorrect results may be yielded or can not be produced if the analysis is not properly converged?