pinot
pinot copied to clipboard
Gpytorch integration - variational GP
Example usage can be found in scripts/gp/gp_playground_gpytorch.ipynb
net_variational_gp = pinot.Net(
pinot.representation.Sequential(
pinot.representation.dgl_legacy.gn(kwargs={"allow_zero_in_degree":True}),
[64, 'relu', 64, 'relu', 64, 'relu']),
output_regressor_class=pinot.regressors.VariationalGP,
num_inducing_points=150,
num_data=902,
beta = beta,
)
lr = 1e-4
optimizer = torch.optim.Adam([
{'params': net_variational_gp.representation.parameters(), 'weight_decay': 1e-4},
{'params': net_variational_gp.output_regressor.parameters(), 'lr': lr*0.1}
], lr=lr)
for n in range(n_epochs):
total_loss = 0.
for (g, y) in data:
optimizer.zero_grad()
loss = net_variational_gp.loss(g, y.flatten())
loss.backward()
optimizer.step()
total_loss += loss.item()
guys, can we get some movement here?
Yeah, Duc and I have been discussing progress on it and benchmarking
On Wed, Mar 31, 2021, 8:13 PM karalets @.***> wrote:
guys, can we get some movement here?
— You are receiving this because your review was requested. Reply to this email directly, view it on GitHub https://github.com/choderalab/pinot/pull/122#issuecomment-811546900, or unsubscribe https://github.com/notifications/unsubscribe-auth/AADZLMWQQKKS5HBNKJ2G2WTTGO3BNANCNFSM4XCEA4IQ .